
Biologically-Inspired Pulse Signal
Processing for Intelligence at the Edge
Kan Li* and José C. Príncipe1

1Computational NeuroEngineering Laboratory (CNEL), Department of Electrical and Computer Engineering, University of Florida,
Gainesville, FL, United States

There is an ever-growing mismatch between the proliferation of data-intensive, power-
hungry deep learning solutions in the machine learning (ML) community and the need for
agile, portable solutions in resource-constrained devices, particularly for intelligence at the
edge. In this paper, we present a fundamentally novel approach that leverages data-driven
intelligence with biologically-inspired efficiency. The proposed Sparse Embodiment
Neural-Statistical Architecture (SENSA) decomposes the learning task into two distinct
phases: a training phase and a hardware embedment phase where prototypes are
extracted from the trained network and used to construct fast, sparse embodiment for
hardware deployment at the edge. Specifically, we propose the Sparse Pulse Automata via
Reproducing Kernel (SPARK)method, which first constructs a learningmachine in the form
of a dynamical system using energy-efficient spike or pulse trains, commonly used in
neuroscience and neuromorphic engineering, then extracts a rule-based solution in the
form of automata or lookup tables for rapid deployment in edge computing platforms. We
propose to use the theoretically-grounded unifying framework of the Reproducing Kernel
Hilbert Space (RKHS) to provide interpretable, nonlinear, and nonparametric solutions,
compared to the typical neural network approach. In kernel methods, the explicit
representation of the data is of secondary nature, allowing the same algorithm to be
used for different data types without altering the learning rules. To showcase SPARK’s
capabilities, we carried out the first proof-of-concept demonstration on the task of
isolated-word automatic speech recognition (ASR) or keyword spotting, benchmarked
on the TI-46 digit corpus. Together, these energy-efficient and resource-conscious
techniques will bring advanced machine learning solutions closer to the edge.

Keywords: automatic speech recognition, edge computing, internet of things, keyword spotting, kernel adaptive
filtering, kernel method, reproducing kernel hilbert space, neuromorphic computation

1 INTRODUCTION

Machine Learning (ML), especially deep learning (DL), is rapidly becoming the de facto model-based
solution inmany areas of information technologies because of its unprecedented accuracy inmany practical
problems, such as image classification, speech recognition, and natural language processing, etc (Collobert
andWeston, 2008; Hinton et al., 2012; Krizhevsky et al., 2012). However, this breakthrough in performance
does not come for free, i.e., the no-free-lunch theorem (Wolpert, 1996). DL solutions are typically fueled by
enormous amounts of data (where data is used as a cheap prior formodeling) and need high computational
load and memory usage due to their large multiscale architectures, which require specialized hardware, e.g.,
graphics processing units (GPUs) and/or cloud computing.

Edited by:
Manu Rastogi,

Hewlett-Packard, United States

Reviewed by:
Virag Chaware,

Allegro Microsystems, LLC,
United States
Swati Sharma,

Microsoft, United States

*Correspondence:
Kan Li

likan@ufl.edu

Specialty section:
This article was submitted to

Machine Learning and Artificial
Intelligence,

a section of the journal
Frontiers in Artificial Intelligence

Received: 01 June 2020
Accepted: 19 August 2021

Published: 08 September 2021

Citation:
Li K and Príncipe JC (2021)

Biologically-Inspired Pulse Signal
Processing for Intelligence at the Edge.

Front. Artif. Intell. 4:568384.
doi: 10.3389/frai.2021.568384

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 5683841

ORIGINAL RESEARCH
published: 08 September 2021
doi: 10.3389/frai.2021.568384

http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2021.568384&domain=pdf&date_stamp=2021-09-08
https://www.frontiersin.org/articles/10.3389/frai.2021.568384/full
https://www.frontiersin.org/articles/10.3389/frai.2021.568384/full
http://creativecommons.org/licenses/by/4.0/
mailto:likan@ufl.edu
https://doi.org/10.3389/frai.2021.568384
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2021.568384

In many engineering applications, frommonitoring to process
control, as well as point of sales, inventory management, speech
recognition, real-time decision making and monitoring in
medical applications, automatic translation, social media, etc.,
one needs to deliver solutions that can be run in small
microprocessors or embedded systems. Perhaps the application
domain that suffers the most regarding the high computational
demand of DL is edge computing (Shi et al., 2016), i.e., the ability
to implement intelligent, online signal processing solutions near
the sensors, saving tremendous bandwidth and reducing latency
by transmitting processed decisions instead of raw data. Likewise,
the implementation of Industry 4.0 standards that are
revolutionizing the manufacturing and industrial platforms
will benefit from the same approach. These, along with ethical,
privacy, and security issues will only get worse if not addressed
properly, as more and more devices become connected. An
estimated 29.3 billion networked devices will be connected to
IP networks in 2023 (Cisco, 2020), and roughly 850 Zettabytes
(ZB) of data will be generated annual outside the cloud by 2021,
competing for the global data center traffic of only 21 ZB (Cisco,
2019).

To deliver real-timemachine learning solutions, we should not
forget Widrow’s least mean square (LMS) algorithm, invented in
1960 (Widrow and Stearns, 1985), which modifies system
parameters after every data sample. If one can accomplish this
update before the next data sample comes in (determined by the
input sampling frequency), we have real-time learning on the
linear model. With the advent of kernel adaptive filtering (KAF)
(Liu et al., 2010), real-time learning on the nonlinear model has
been achieved. We more recently advanced the state-of-the-art by
proposing the first fully-developed state-space model
implementation in the Reproducing Kernel Hilbert Space
(RKHS), an adaptive dynamical system called the Kernel
Adaptive AutoRegressive-Moving-Average (KAARMA)
algorithm, using the representer theorem (Li and Príncipe,
2016). Recurrent mappers are essential for time series
applications. We know how to build large-scale solutions from
the ground up, but the question remains on how to effectively
scale them down for the edge, where complex ML algorithms and
advanced electronic hardware are not supported.

The proposed approach will be novel in two fundamental
respects. First, we posit that for many applications, especially in
offline learning or implementation, there is no good reason,
besides straightforwardness, to deploy the same ML program
that searches in a training set for the optimum of the decision
boundaries (or fitting hyperplanes), which has been embraced by
the ML community. Once the parameters are fixed, the input-
output mapping has been discovered (i.e., deterministic) and can
be easily approximated with a sparse embodiment in hardware,
e.g., a field programmable gate array (FPGA), using memory-
based techniques augmented with rule-based finite state
machines (FSMs) or automata, akin to lookup tables. Second,
following an inspiration from biology, there must exist
advantages of power and bandwidth in working with point
processes, because the neurons in the brain interact in this
way. Spike-based computation has been actively researched in
neuromorphic computing (Maass et al., 2005), however we

submit that the critical issue is how to effectively train these
architectures, even if we overlook the many other bottlenecks of
digital computation (still heavy) or analog implementations (still
plagued by parameter drift). Currently, only the projections are
trained, which is a shortcoming. Alternatively, our approach calls
for processing with spike or pulse trains in the time domain, the
essence of neuromorphic solutions, but using statistical signal
processing and machine learning to find the optimal solutions,
which solves both shortcomings of neuromorphic approaches.
We call this approach the Sparse Embodiment Neural-Statistical
Architecture (SENSA), which will be automated with the learned
(fixed) input-output mapping for edge computing and Internet of
Things (IoT).

We prefer to employ the terminology “pulse trains” instead of
the neuromorphic “spike trains” because of the specific way we
convert continuous-time-and-amplitude signals created in the
real world with an integrate-and-fire converter (IFC) (Singh
Alvarado et al., 2011). We showed mathematically that the
IFC creates a discrete (positive and negative pulses)
continuous-time pulse train where the time distance between
pulses (inter-pulse interval) translates the area under the curve
and allows the reconstruction of the original continuous signal
with an arbitrarily small approximation error (Feichtinger et al.,
2012). Subsequently, we have shown that it is possible to perform
arithmetic operations (addition, multiplication, and convolution)
of analog signals directly using pulse trains (Nallathambi and
Principe, 2020). The big appeal of this approach is the potential
ultra-low power implementation, because of the asynchronous
nature of the computation, i.e., algorithm computes only when
there is a pulse. Hence, theoretically, this only requires flip-flops
and memory, not synchronous processors. One of the difficulties
faced in our early work was the need to design automata using
expert knowledge about the signal. This difficulty was
subsequently removed with the use of a ML methodology that
learns directly from pulse trains the features needed for the
application using supervised learning. Our approach is online
and utilizes segments of the multichannel pulse trains to define a
reproducing kernel, then maps the pulse data to an RKHS, where
classical linear methods are used to derive nonlinear solutions in
the original input space using inner products.

Specifically, we propose the Sparse Pulse Automata via
Reproducing Kernel (SPARK) method for SENSA, which first
constructs a learning machine in the form of a dynamical system
using energy efficient pulse trains and KAARMA, then extracts a
sparse rule-based solution, in the form of automata using metric-
based prototypes, for rapid deployment in edge computing
platforms. The theory of reproducing kernels (Aronszajn,
1950) is an attractive alternative to the ubiquitous neural
networks used in DL, as it is a more principled and systematic
approach to training learning machines. There is no architectural
hyperparameter to set (i.e., nonparametric), and, in the case of
feedforward solutions such as support vector machines (SVMs),
global optimum can be achieved directly from the data using
quadratic programming. The results can also be readily
interpreted using geometry and statistical learning theory. The
recent resurgence of interest in kernel methods has paved the way
for competitive performances on many challenging tasks

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 5683842

Li and Príncipe Pulse Edge Computing

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

compared to deep neural networks (Rahimi and Recht, 2007; Cho
and Saul, 2009; Huang et al., 2014; Wilson et al., 2016).

Edge computing can benefit from a kernel perspective, making
them more powerful and applicable to nonlinear processing in a
simpler and more elegant way. To overcome the shortcoming of
conventional kernel methods which required fixed (constant)
dimension inputs or static patterns, we developed the KAARMA
algorithm for sequence learning and to account for the variability
in the temporal dimension of spatiotemporal signals (Li and
Príncipe, 2016).

The key advantage of kernel methods is their ability to work
with functions in the RKHS, and changing the reproducing kernel
function has no impact on the underlying learning algorithm.
Therefore, SPARK is agnostic to the input type and can operate
on real vectors using the Gaussian kernel, or directly on event-
based pulse trains, by designing an appropriate pulse kernel. This
interchangeability is not applicable to artificial neural networks
(ANNs) and spiking neural networks (SNNs) because spike trains
are non-differentiable.

As a proof-of-concept, we will apply the SENSA paradigm to
isolated speech recognition using SPARK. Speech signals are
highly non-stationary with large variations in their
spatiotemporal realizations. We have already shown that
KAARMA outperforms hidden Markov models (HMMs) and
liquid state machines (LSMs) for spoken digit recognition (Li and
Príncipe, 2018a) using conventional speech features and pulse
trains mimicking the cochlea of the human auditory system, in
terms of improved accuracy and noise robustness. Our pulse-
based neural-statistical approach is ideal for IoT and edge
computing, as the only requirement is time stamping at the
Nyquist frequency of the data source, which decreases the
hardware implementation clock rate, such as in an FPGA, by
orders of magnitude compared with the current generation of
digital signal processors (DSPs) and GPUs. We will demonstrate
that this combination of biologically-inspired pulse input and
memory-based implementation further reduces the
computational cost and footprint, which opens the door for
realtime microwatt intelligent signal processing in practical
intelligence at the edge applications.

We organize the remainder of this paper as follows. In Section
2, we present the Sparse Embodiment Neural-Statistical
Architecture and SPARK. Performances on isolated word
recognition in both software and hardware are evaluated in
Section 3 using the benchmark TI-46 digit corpus. Finally,
Section 4 concludes this paper.

2 METHODS

SENSA consists of two distinct phases. First, we encode the time
structure and temporal evolution of time series, such as speech, in
spike or pulse trains. The energy efficiency of neural signal
transmission plays an integral role in biology, particularly in
the information processing of the human brain. Specifically, we
wish to develop a biologically-inspired end-to-end ML system,
without hand-designed feature extraction or engineering, past the
stage of pulse generation.

Furthermore, rather than learning static feedforward models,
we aim to learn and model the dynamics directly on the pulse
trains by constructing a state-space model (SMM) in the RKHS.
This dynamical system approach is rooted in classical Newtonian
mechanics, where the evolution of the observables over time is
governed by attractors, grammar or rules. This framework can be
used to explain seemingly-chaotic time series using simple latent
state transitions. Grammatical inference or rule discovery of
dynamical systems provides a parsimonious way to analyze,
model, and classify trajectories with large variations in
realization (time and scale) but are equivalent in dynamics.
This enables us to find such elegant attracting behavior and
scale down ML solutions.

Recurrent networks are typically used for learning time
structures and temporal dependencies in data. However, in
practice, the solution depends on the specific data type, e.g.,
conventional ANN and SNN involve completely different
learning mechanisms and output, due to the non-differentiable
activation functions of spiking neurons. In this paper, we strive
for a unifying framework that is independent of input signal
representation. This vastly improves the usefulness and versatility
of the ML solutions. To achieve this goal, we apply the theory of
RKHS to map the pulse-train input (single or multichannel) into
an RKHS, then construct and learn a dynamical system in this
space using KAARMA. For kernel methods, the learning
algorithm is defined in terms of the inner products between
potentially infinite-dimensional features or functions, in the
functional space, and not in terms of the original input
representation. The input can take the form of discrete pulses,
continuous-valued attributes, symbols, or graphs. We can
compute the inner product in closed form using the kernel
trick. Therefore, we have the freedom to select the input
representation independently with an appropriate reproducing
kernel function, and the learning algorithm is not impacted when
changing the input-kernel pair.

Second, we formulate a systematic embedment method that
extracts the learned dynamics in the form of simple FSMs or
lookup tables using prototypes and implement or deploy them in
hardware. Once the dynamics are learned and fixed, these
memory-based solutions require no complex computation and
completely replace the state transition and observation functions
of the dynamical system in the previous phase. These sparse
embodiments are ideal for rapid deployment in IoT and edge
computing, where resources are limited. This specific formulation
of SENSA using kernel methods is termed SPARK.

2.1 Sparse Embodiment Neural-Statistical
Architecture
Conventional ML uses the same network for training and testing.
However, there are many scenarios where complex, large-scale
learning cannot be supported, such as in edge computing. SENSA
is an approach that maintains a large network, trained either
online or offline, always using pulse-encrypted data, and
periodically deploys or updates an agile portable solution, a
scaled-down version approximated to the desired accuracy, for
realtime processing near the sensors in resource-constrained

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 5683843

Li and Príncipe Pulse Edge Computing

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

environments, using memory-based techniques augmented with
rule-based deterministic finite automata (DFA).

The energy efficiency of computing with spike trains has been
long understood and appreciated (Maass, 1997; Furber et al.,
2014; Merolla et al., 2014), particularly in the context of spiking
neural networks. However, there exists a chasm between the
methodologies for continuous amplitude signals and event-based
spike trains. SNNs trained either directly using spiking-timing
dependent plasticity (STDP) or through back-propagation have
not demonstrated comparable results to DL ANNs. Current
research in neuromorphic architectures mostly focuses instead
on converting a trained deep neural network to an SNN to
improve its accuracy (Rueckauer et al., 2017). This gap can be
easily bridged with RKHS methodologies, since the actual input
representation is secondary for kernel methods. Indeed, the same
ML code can be utilized for both types of signals, once the proper
kernel function for each signal modality is chosen. Thus, we
propose an alternative neural-statistical approach that uses spike
or pulse input to derive energy efficient and low latency solutions.
This novel approach enables ultra-low power deployment in
portal devices connected to intelligent personal assistants and
other IoT devices.

As illustrated in Figure 1, this novel, hybrid neuromorphic-
statistical ML approach for brain-inspired learning first converts
analog signals into data-efficient binary pulse trains, then uses
kernel method to train adaptive state-space models. These
dynamical models can then be approximated using sparse
embodiment and deployed in a network of reprogrammable
finite state machines, using only the timing of the digital
pulses and table lookups to index the next state or output,
without performing expensive computations. Compared with
conventional input features, event-based pulse trains (used

extensively in the nervous system as the primary mode of
information processing and transmission) are highly efficient
and robust to noise, leading to extremely small hardware
footprint which are ideally suited for low power on-chip
processing. Furthermore, by leveraging FSMs, the proposed
approach requires no arithmetic for functional evaluation
(output values are retrieved from memory), allowing complex
processing capability in real-time that would otherwise entail
prohibitive expenses or be pushed away from the edge and into
the cloud. Thus, SENSA offers increased security and privacy by
eliminating the need to continuously upload potentially sensitive
data online for processing, and uses only the pulse-
encrypted data.

We choose to use kernel methods instead of the typical neural
networks used in DL, because the theory of RKHS is a
theoretically-grounded, powerful, and versatile unifying
framework for solving nonlinear problems in signal processing
andML. There is no a priori need to choose the proper number of
parameters for modeling. The complexity of kernel methods
scales with the number of training instances, not the
dimensionality of the input features or the architecture of the
network. Thus, kernel methods are extremely effective when the
data dimension is high and the number of training samples is
relatively small. Furthermore, all online kernel methods lend
naturally to sparsification techniques as data samples are
processed on an individual basis. We have developed several
techniques to curb the growth of similar networks, including
using a combination of novelty and surprise-based criteria and
quasi-orthogonal decomposition (Li and Príncipe, 2016; Li and
Príncipe, 2017; Li and Príncipe, 2018a). The biggest advantage of
SPARK is that the actual data representation is secondary to the
learning algorithm. This key feature imposes no restriction on the
relationships between the input signals or their types, e.g., we can
easily model a biological systems using a combination of
continuous-amplitude local field potentials (LFPs), spike-train
neural signal, and vectorized state variables at the input. This
makes SPARK solutions extremely flexible.

2.2 Model Building Using Kernel Adaptive
AutoRegressive-Moving-Average
We submit that dynamical approaches are much more
appropriate to deal with spatiotemporal signals, and when
coupled with pulse trains, either synthesized or generated
directly from activity-driven, event-based vision sensors, a
compressive sampling approach is achieved that decreases the
correlation over time which plagues random processes analysis
(and it is still unappreciated). Capturing structure in time series
requires nonlinear state models. State modeling represents the
signal history very efficiently and exploits this information at the
current time. Our approach uses nonlinear data projections to an
infinite-dimensional Hilbert space of functions, which we termed
kernel adaptive filtering (Liu et al., 2010). The theory of RKHS
simplifies the operations on functions by restricting them to inner
products (the kernel trick).

Here, we briefly introduce the basic concept of linear filtering
in the RKHS or KAF. For a set of N data points D � {xi, yi}Ni�1,

FIGURE 1 | Sparse Embodiment Neural-Statistical Architecture
(SENSA): once learning parameters are trained, the input-output mapping can
be easily approximated using memory-based techniques augmented with
rule-based finite state machine (FSM) for rapid deployment in hardware
(FPGA). We call this specific formulation using kernel methods for model
building Sparse Pulse Automata via Reproducing Kernel (SPARK).

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 5683844

Li and Príncipe Pulse Edge Computing

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

with input xi ∈ Rnx (where Rnx is the nx-dimensional real space)
and output yi ∈ R, we want to infer the underlying function
y � f(x). From a weight-space perspective, the estimated latent
function f̂ (x) is expressed in terms of a set of parameters or
weight vector W ∈ Rnx as

f̂ (x) � Wux. (1)

To overcome the limited expressiveness of this linear model,
we first project the input vector x ∈ U4Rnx (where U is a
compact input domain in Rnx) into a potentially infinite-
dimensional feature space F, using a U→F mapping ϕ(·),
then Eq. 1 becomes

f̂ (x) � 〈Ω, ϕ(x)〉F � Ωuϕ(x), (2)

where Ω is a potentially infinite dimensional weight vector in the
feature space, denoted by Greek letter.

Applying the kernel trick and the representer theorem
(Scholkopf et al., 2001), Eq. 2 can be expressed as a weighted
sum of basis functions

f̂ (x) � ∑N
i�1

αiK(xi, x), (3)

where αi are the coefficients, K(x, x′) is a reproducing or Mercer
kernel associated with the inner product 〈ϕ(x), ϕ(x′)〉F, and N is
the number of basis functions or training samples. Note that F is
equivalent to the RKHS H induced by the kernel if we identify
ϕ(x) � K(x, ·), i.e., F � H. Typically, the Gaussian radial basis
function (RBF) is used

Ka(x, x′) � exp −a‖x − x′‖2(), (4)

with the kernel parameter a > 0. The key feature ofMercer kernels
is the universal approximation property: an arbitrary continuous
target function can be approximated uniformly to any degree of
accuracy over any compact subset of the input space. The theory
of RKHS enables us to represent a general nonlinear function as a
linear weight vector Ω in the feature space.

2.2.1 State Space Representation in the Reproducing
Kernel Hilbert Space
From the perspective of dynamical systems, recurrent networks
are essential for learning time structures and temporal
dependencies in data. We are interested in estimating the
hidden states recursively via the sequence of observations or
measurements dependent on the state. The theory of RKHS
allows us to construct a nonlinear state-space model with
linear weights in the functional space.

First, we define a dynamical system in terms of a general
continuous nonlinear state-transition and measurement
functions, f (·, ·) and h (·), respectively,

xi � f(xi−1, ui), (5)

yi � h(xi), (6)

where

f(xi−1, ui) �Δ f (1)(xi−1, ui), . . . , f (nx)(xi−1, ui)[]T
� x(1)i , . . . , x(nx)i[]T , (7)

h(xi) �Δ h(1)(xi), . . . , h(ny)(xi)[]T � y(1)i , . . . , y
(ny)
i[]T , (8)

with input vector ui ∈ Rnu , state vector xi ∈ Rnx , and output
yi ∈ Rny , where they have independent dimensionality or
degrees of freedom, with the parenthesized superscript (k)

denoting the k-th column of a matrix or the k-th component
of a vector. To illustrate the input-agnostic property of a SPARK
formulation, we first describe the KAARMA algorithm using a
generic input sequence (real vector) ui, then change it for pulse
trains in Section 2.3, which essentially amounts to a simple
substitution of the reproducing kernel.

For simplicity, we express the dynamical system defined in Eqs
5, 6 using a new hidden state vector

si �Δ
xi
yi

[] � f(xi−1, ui)
h◦f(xi−1, ui)[], (9)

yi � s
(ns−ny+1:ns)
i � 0 Iny[]︸���︷︷���︸

I

xi
yi

[], (10)

where ◦ is the function composition operator, 0 is an ny × nx
zero matrix, and Iny is the ny × ny identity matrix. By
concatenating the original state vector xi with the output yi,
we create an augmented state vector si ∈ Rns , i.e., ns � nx + ny.
Using this expression, the measurement equation simplifies to
the selector matrix I�Δ 0 Iny[].

Using the new state variable s, we define the following
equivalent transition function g (si−1, ui) � f (xi−1, ui), and
Eqs 9, 10 becomes

xi � g(si−1, ui), (11)

yi � h◦g(si−1, ui). (12)

To model a dynamical system with general continuous
nonlinear transition and measurement functions, g (·, ·) and
h◦g (·, ·), respectively, we first map the input vector ui and the
augmented state vector si into two separate RKHSs as ϕ(ui) ∈ Hu

and φ(si) ∈ Hs, respectively. Next, the state-space model defined
by Eqs 11, 12 can be rewritten as a set of weights (i.e., functions in
the input space) in the joint RKHS Hsu�ΔHs⊗Hu, using the
representer theorem, as

Ω�Δ ΩHsu�Δ g(·, ·)
h◦g(·, ·)[], (13)

where ⊗ denotes the tensor-product operator. The features in the
joint tensor-product RKHS are defined as

ψ(si−1, ui)�Δ φ(si−1) ⊗ ϕ(ui) ∈ Hsu, (14)

and the tensor-product kernel is defined as

〈ψ(s, u),ψ(s′, u′)〉Hsu
�Δ Kasu(s, u, s′, u′)
� (Kas⊗Kau)(s, u, s′, u′)
� Kas(s, s′) ·Kau(u, u′). (15)

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 5683845

Li and Príncipe Pulse Edge Computing

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Here, data samples are evaluated using inner products or
similarity measures. We can view the tensor-product kernel in
Eq. 15 as an analogue to a soft-valued logical AND operator for
joint similarity, e.g., to reach a desired next state requires both the
proper input AND the right previous state.

Finally, combining Eqs 10–12, 13 the kernel state-space model
(SSM) becomes

si � ΩTψ(si−1, ui), (16)

yi � Isi. (17)

Figure 2 illustrates a simple kernel adaptive ARMA model
operating on multichannel pulse trains. In general, the states
variables xi are hidden from the observer, and a desired output di
may not be available at every time step, e.g., a deferred desired
output value df or sequence label for the entire times series only
appears at the final indexed step i � f.

In this paper, we are interested in learning and modeling the
dynamics of an unknown system where the only information we
know during training are the sequence labels, i.e., yf � ±1 for a
positive or negative example of a target class of sequences. This
is an inference task, as opposed to a prediction problem. There is
no predicting the next input in a sequence as is in the
conventional frame-based approach of an HMM. The
network either accepts or rejects the entire time series at the
conclusion of each sequence. Compared to prediction problems,
this is more difficult because we don’t have complete
classification knowledge of every possible subsequence
(i.e., when inference and prediction are equivalent). On the
other hand, this formulation is much more useful and versatile,
since a dynamical model makes no assumption on the sequence
length f, i.e., it can operate on sequences of arbitrary duration.
To tackle this problem, we will take a grammatical-inference
approach. The state transition and measurement functions can
be parametrized as the weights of a fully connected recurrent

network and adapted by backpropagating the label error from
the end of each input sequence.

Parameter adaptation for the linear state model is well
understood, and the famed Kalman filter is an efficient
recursive estimator that can update in real time. However,
linear state model is not universal, i.e. solutions with small
error are possible only when the desired response exists in the
span of the input space (Haykin, 1998). Past research on
dynamical modeling of complex nonlinear spatiotemporal
signals such as speech demonstrates that the linear dynamical
model is not competitive with the HMM statistical model. On the
other hand, the theory of RKHS enables classical linear methods
to produce general nonlinear solutions, and by operating in a
potentially infinite-dimensional function space, we are freed from
the limited expressiveness of the input space and model. The
weights Ω in the RKHS can be learned using stochastic gradient
descent, for a more detailed discussion on the adaptive update
procedure with each incoming input sample, please refer to the
full KAARMA derivation (Li and Príncipe, 2016). More recently,
we have extended Bayesian filtering to the functional space in (Li
and Principe, 2019).

The KAARMA algorithm achieves the best of both worlds: it
preserves the simplicity of a linear dynamical model and features
the universal property of functional spaces. This flexibility makes
it ideally suited for applications involving multiple signal
modalities and with different time scales, such as
computational neuroscience applications using either local
field potentials, spike trains, or a combination of both. The
speech recognition application exemplifies a statistical learning
approach to working with multichannel pulse trains, which
improves the biorealism of the approach and allows us to take
advantage of the energy-efficient and resource-conscious pulse
information encoding and processing. Versatility is maximized
by ensuring data-type interchangeability. The essential building
block for designing the pulse-based KAARMA is therefore the
kernel, which will be discussed next.

FIGURE 2 | A kernel adaptive autoregressive-moving-average (KAARMA) network operating on multichannel pulse trains.

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 5683846

Li and Príncipe Pulse Edge Computing

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

2.3 Reproducing Kernel Hilbert Space for
Pulse Trains
A pulse train is represented as a sequence of M asynchronous,
ordered spike timings, i.e., P(i) � {tm ∈ T : m � 1, . . . ,M} in the
interval T � [0,T], which can be interpreted as a realization of an
underlying stochastic point process i with conditional intensity
function λ(t|H(i)

t), time coordinate t ∈ T � [0,T], and the history
of the process up to time t as H(i)

t . The major challenge in pulse
signal processing is that pulse trains are devoid of a natural
algebra. To overcome this, we must first establish a space with the
necessary properties for computation. Our approach is to define
an appropriate reproducing kernel function on pulse trains that
captures nonparametrically the instantaneous time structures and
the variability of the event-based pulses. Once we define such a
positive-definite or Mercer kernel for pulses, it maps the pulse
trains into a Hilbert space of functions, allowing classic linear
signal processing techniques to be directly applied via the
kernel trick.

To define the joint tensor-product RKHS for pulse-based
KAARMA implementation, we choose the Schoenberg kernel
(Park et al., 2012), a binless, universal, nonlinear spike-train
kernel. It uses the conditional intensity functions to compute
similarity between two temporal point processes and is
biologically-inspired. The Schoenberg kernel features three key
advantages over other spike-train kernels: 1) defines an injective
mapping 2) embeds neural responses of arbitrary stochasticity as
the sample mean in the RKHS, and 3) approximates arbitrary
spike-train function as a universal kernel (Park et al., 2013). For
two conditional intensity functions λ(t|H(i)

t) and λ(t|H(j)
t), the

Schoenberg kernel is defined as

Kaλ λ t|H(i)
t(), λ t|H(j)

t()()�Δ exp −aλ∫
τ
λ t|H(i)

t() − λ t|H(j)
t()()2dt(),

(18)

with pulse-train kernel parameter aλ > 0 (Paiva et al., 2009; Park
et al., 2012; Dura-Bernal et al., 2016). For a given pulse train, we
can estimate its conditional intensity function by convolving the
pulse timings tm with a smoothing function g(t) as

λ̂(t) � ∑M
m�1

g(t − tm), {tm ∈ T : m � 1, . . . ,M}. (19)

We can use this kernel to compute the inner product between a
pair of pulse trains of the same duration T and arbitrary spike counts,
either from a single integrate-and-fire converter taken at different
times, or from two different IFCs in the same time window. For
speech recognition, we are interested in quantifying the difference in
the conditional intensity function estimates or temporal structures of
the same pulse train or IFC channel across time. For multichannel
pulse input, the similarity measure can be summed or averaged over
all channels. Specifically, the multichannel pulse trains are segmented
into smaller sub pulse trains of a fixed duration, similar to
conventional speech segmentation using a fixed frame size and
rate but without feature extraction. Figure 2 shows a KAARMA
network operating directly on multichannel pulse-train frames of
duration T at every discrete time step.

For simplicity but without the loss of generality, the
rectangular smoothing function g(t) � 1

T (U(t) − U(t − T)) is
used to estimate the conditional intensity function, with the
Heaviside step function U(t) and T ≫ �Δτ, the average inter-
pulse interval. Here, the pulse-train distance is defined on the
precise pulse timings from each ordered set and agnostic to the
pulse count. When the number of pulses are different, we pad the
pulse train with the fewer count with the interval time or frame
size T. One way to conceptualize this is that when two temporal
point processes are similar, their pulse timings become closer or
synchronized, reducing the pair-wise distance.

2.4 Kernel Adaptive
AutoRegressive-Moving-Average Chain
and Directional Learning
For learning long-term dependencies, a simple technique is to
partition the input sequence into a fixed number of smaller
sequences (length of each subsequence is not fixed) and train
a chain of KAARMA networks in cascade, each responsible for a
different ordered region of the input signal (Li and Príncipe,
2018b). We treat each ordered partition as a different grammar,
and train a separate KAARMAnetwork for each, but use the same
class label. The overall recognition probability becomes the
product of individual soft-max scores from each network.

Unlike static patterns which operate locally, reversing the
sequence order generates a new dynamical system or
complementary grammar that can be combined with the
original to improve classification performance. Here, we
combine the results of two KAARMA chains trained on the
same sequences in the forward, left-to-right temporal direction
(L2R or → with contextual information constructed from the
past) and the backward, right-to-left ordering (R2L or ← with
future context), by simply multiplying their softmax scores to
derive a bi-directional (#) system with enhanced
recognition rate.

2.5 Rule Extraction for Sparse-Embodiment
Deployment in Edge Computing
In formal language theory (Harrison, 1978), deterministic finite
automata recognize regular grammars in the Chomsky hierarchy
(Chomsky, 1956) and can operate in either language generation
or validation mode. A DFA is formally defined as a 5-tuple:
A � 〈Q,Σ, δ, q0, F〉, with a finite set of states Q, a finite input
alphabet Σ, a state transition function δ where (δ: Q ×Σ → Q)
maps the current state and input symbol to the next state, the
initial state q0 ∈ Q, and a set of accepting (final) states F 4Q. A
DFA can be implemented efficiently as a lookup table. For an
input sequence or word w over the alphabet Σ, the DFA A
recognizesw if it arrives at an accepting state after the last symbol,
otherwise, w is deemed ungrammatical and rejected. The
language L(A) is the set of all acceptable strings by A.

A grammar, on the other hand, is a 4-tuple: G � 〈N,T,P, S〉,
with disjoint finite sets of nonterminal symbols N, terminal
symbols T, a set of production rules P, and the start symbol
S ∈N. A grammar is regular if and only if every production rule in

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 5683847

Li and Príncipe Pulse Edge Computing

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

P is one of the following three forms: 1) B→ a, 2) B→ aC, or 3)
B → ϵ, where B and C are in the nonterminal set N with B � C
allowed, a ∈ T, and ϵ is the empty string. From A, one can easily
construct a regular grammar such that L(G) � L(A). The
grammar is the generative descriptor of a language while the
corresponding DFA is the analytical descriptor.

A DFA or FSM models a discrete-time dynamical system
(DTDS) in a discrete state space, where from an initial state, input
sequence uniquely determine all the state transitions. From this
perspective, DTDS identification can be viewed as a grammatical
inference task: from a training set of positive and negative
examples of sequences, infer the grammar satisfying all
available samples. However, grammar induction is NP-
complete (Gold, 1978). Heuristic algorithms were used in early
research on DTDS, but were shown to scale poorly with the
automaton size (Angluin and Smith, 1983). Since the 1940s, the
relationship between FSM and recurrent neural networks (RNNs)
has been studied extensively (McCulloch and Pitts, 1943). Minsky
showed that RNNs can simulate any FSM (Minsky, 1967),
followed by Siegelmann, for arbitrary Turing machine in real-
time (Siegelmann and Sontag, 1995). In (Li and Príncipe, 2016),
we showed that KAARMA networks can infer grammars
efficiently using far fewer training samples than RNNs. Using
a dynamical system approach with grammatical inference
formulation, KAARMA captures the dynamics of the input
sequences with a small set of attractors, which greatly
facilitates the extraction of a finite state machine or lookup
table from the trained network.

For real-valued data (infinite alphabet size), our objective is to
generalize the input patterns and states to a set of prototypes, then
use the trained dynamical system to enumerate and trace all
possible next states and form a memory-based lookup table,
which can be embedded in hardware and operated on the fly
without performing complex computations. To derive a finite state
representation from a trained KAARMA network, we first
discretize the input and state spaces. The curse of dimensionality
associated with high-dimensional state and input spaces can be
easily avoided for kernel methods by clustering only parts of the
space where data is available, i.e., subspace spanned by the training
data. Using the spatial clustering method outlined in (Li and
Príncipe, 2016, Algorithm 2), we introduce two quantization
factors or distance-based clustering thresholds, qinput and qstate,
for the input space and the state space, respectively. The initial

alphabets consist of the initial state and the first input vector. To
form their respective alphabets Q and Σ directly from the training
data, states (where next states are generated using the trained
KAARMA network) and input points are introduced to the spatial
clustering algorithm or quantizer one at a time. The Euclidean
distances are computed with respect to all previous data centers or
letters in the alphabets. If the minimum distance for the new data
point is smaller than the quantization factor, the dictionary or
alphabet is kept the same; otherwise, it is added to the
corresponding alphabet. This sparsification technique has been
previously used to train KAARMA networks using significantly
fewer data points than available (Li and Príncipe, 2016).

After we have fixed the input and state alphabets of the FSM by
running the entire training data through the trained KAARMA
network and applying spatial clustering to all incoming data points
using thresholds qinput and qstate, we can map out the state
transition table (δ: Q ×Σ → Q) for any input-state pairs. Again,
this is accomplished by processing all input-state pairs in the
alphabets Σ and Q through the trained KAARMA network and
indexing the nearest Euclidean neighbor in the state alphabetQ for
the next state output. Once a state-transition table is extracted, we
can further minimize the size of the state alphabet by removing
unreachable states and merging non-distinguishable states to form
the minimal automaton, as shown in (Li and Príncipe, 2016).

3 SIMULATION RESULTS

Speech is a perfect application to demonstrate the competitive
advantage of SPARK to quantify time structure instead of
conventional Markov Chain statistical approach, but our
proposed SENSA framework applies to all locally stationary
signals. Statistics have difficulty coping with temporal
information because a random process is a family of random
variables over time that violate the independent and identically
distributed (i.i.d.) property, the simplifying assumption that
enables statistics for real-world phenomena, e.g., Bayesian filter
requires time-consuming conditional expectations for
quantifying the corresponding time structure.

3.1 Automatic Speech Recognition System
Using Finite State Machines
To demonstrate our proof-of-concept implementation, we used
the TI-46 corpus of isolated digits for benchmarking the
KAARMA-based SPARK classifiers. This dataset consists of
spoken words from eight male and eight female English
speakers, each uttering the digits, “zero” through “nine”, 26
times, at sampling frequency of 16 kHz. Out of the 4160 total
recordings, 25 out of the 26 utterances in each digit-speaker pair
(or 4000 samples) were used in the subsequent multispeaker
experiments. These utterances were further randomly partitioned
into a training set of 2,700 utterances with an equal number of
male/female utterances and digits (i.e., 270 total utterances per
digit with half from female speakers) and a testing set of 1,300
utterances with an equal number of male/female utterances and
digits.

TABLE 1 | Integrate-and-fire converter (IFC) parameters.

Parameter Description Value

Membrane resistance, Rm 10 MΩ
Time constant, τm 10 ms
Spike threshold, Vth −55 mV
Spike delta, Vspike 500 mV
Reversal potential for SRA, EK −200 mV
Reset potential, Vreset −80 mV
SRA time constant, τsra 200 ms
Increase in SRA per spike, Δsra 5 nS
Time for refractory conductance to decay, τref 2 ms
Increase in refractory conductance per spike, Δref 200 nS

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 5683848

Li and Príncipe Pulse Edge Computing

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

In conventional automatic speech recognition (ASR) front-
end using real-valued Mel-frequency cepstral coefficients
(MFCCs) (Davis and Mermelstein, 1980), the following
preprocessing and feature engineering were performed:
Hamming window each input frame and apply a first-order
pre-emphasis filter (α � 0.95), next compute the magnitude
spectrum using the discrete Fourier transform (DFT) then
scale by a Mel-filterbank, lastly obtain the MFCCs from the
log-compressed and discrete cosine transformed energy
output. A total of 13 MFCCs were computed, but only the last
12 coefficients were used to represent the static speech features in
each frame of 25 ms at a rate of 100 frames-per-second (fps),
i.e., at 10 m s intervals or 60% overlap.

For a human-engineered solution, we can expect good
performance using only a 12-dimensional feature vector. Here,
we demonstrate the feasibility of performing the same ASR task
using pulse trains where information is encoded with high efficiency
in the precise pulse timings (events over time) without further
feature engineering, instead of working with waveforms where
information is encoded in the amplitude. Increasing the number
of pulse channels should improve the recognition accuracy, but our
goal is to establish a baseline performance using only 12 channels of
pulse-train input (same number of effective channels as the Mel-
filterbank setup in conventional ASR). To generate the biologically-
inspired pulse trains, we applied a 12-filter gammatone filterbank
(Patterson et al., 1987) with equally spaced center frequencies

(50 Hz–8 kHz) on the equivalent rectangular bandwidth (ERB)-
rate scale to each speech signal, which mimics the cochlea in the
human auditory system. To convert the 12-channel filtered output
into a sparse representation or pulse trains, we normalized the
maximum absolute amplitude to 4 μA and used integrate-and-fire
neurons or IFCs (one per channel) with refractory current and spike-
rate adaptation (SRA) (Gerstner and Kistler, 2002). Table 1
summarizes the parameters used to convert speech signal into
pulse trains.

For training, pulse-train sequences were labeled ±1 based on
the target digit class and segmented into frames the same way as
the MFCCs using 25-ms frames at 100 fps. Unlike the MFCCs, we
directly fed the multichannel pulse trains in each time frame as
features to the pulse-based KAARMA networks without further
feature engineering (i.e., temporal coding) with model parameter
values listed in column 2 of Table 2; Figure 3 shows the pulse-
based front-end for speech processing.

To reduce the bias from data imbalance using the one-vs-all
approach for classification in each word model, the positive class
(10% of the data for each target digit) was replicated 3 times in the
training set with random placement. The final ASR system
consists of 10 word models, one for each digit. During
processing, the word model with the highest confidence
(largest positive final output value) is selected as the predicted
class. To improve the recognition performance and alleviate the
need to learn long term dependencies, each utterance is

TABLE 2 | KAARMA parameters.

Parameter Description Value

(Temporal Coding) (Rate Coding)

Spike-train kernel parameter, aλ 1 −

RBF kernel parameter, au − 5
Hidden-state kernel parameter, as 4 5
Learning rate, η 0.1 0.1
Kernel-distance quantization threshold, q 0.25 0.55

FIGURE 3 | Pulse train front-end for speech recognition: speech signal (sampled at 16 kHz) first passes through a 12-channel gammatone filterbank with center
frequencies equally spaced between 50 Hz and 8 kHz on the ERB-rate scale, then converted into pulse trains using leaky integrate-and-fire neurons or IFCs. This
encodes the time series into a biologically-inspired, highly-efficient sparse representation with mean spike count per frame (T � 25 ms) ranging from 0.42—25.49 across
different channels and digits.

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 5683849

Li and Príncipe Pulse Edge Computing

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

partitioned into five equal segments, this is similar to the 5-state
HMM set up. Depending on the individual utterance, each
segment can contain one or many speech features, with the
total number of segments fixed at 5. In this topology, each word
model consists of five smaller KAARMA networks operating in
cascade. One 5-network KAARMA chain was used to model
each of the ten digits and trained for a single epoch only. The
model parameters were not fully optimized over their respective
ranges to reduce overfitting. Table 3 summarizes the results.
Since HMM has no native support for pulse input, the pulse
count in each frame (i.e., rate coding) was used to compute the
firing rate and formed a continuous-valued 12D feature vector
across all channels. KAARMA networks, on the other hand, are
agnostic to input representation and support both data types,
with rate-coding parameter values shown in column 3 of
Table 2.

Table 4 shows the training and testing set performances of
finite state behavior using different clustering thresholds. The
input and state dictionary sizes are determined from the
training set by the respective quantization factors, and

fixed for the testing set. As we increase the q thresholds,
sparsity is also increased, as more and more data points are
clustered into the same prototype. Figure 4 shows the
performance as a function of quantization thresholds.
Recognition accuracies are inversely proportional to the q
values, as with increased sparsity, data resolution is decreased.
Nonetheless, we can still retain high recognition accuracies
using only a very small subset of the original state space
points. We see that for a trained KAARMA chain, the
extracted finite state behavior is largely determined by the
input alphabet size. Reducing the input resolution limits parts
of the state space that is utilized.

Without loss of generality, a reasonable tradeoff between
performance and sparsity is achieved using qinput � 0.4 and
qstate � 0.2, as shown in Table 4, resulting in a fixed input
alphabet size of 2,344 and a fixed state size of 53, with a good
test set accuracy of 95.31%. We visualized the finite state behavior
or lookup tables of the quantized networks in Figures 5, 6. Since
the input alphabet size 2,344) is relatively large compared to the
number of states 53) used, we used the following compact state

transition or connectivity graphs, with only undirected
transitions between pairs of states shown. Each of the 10 word
models, corresponding to the digits “zero” through “nine”,
consists of five FSMs or lookup tables, each responsible for an
ordered partition of arbitrary length. States are expressed
sequentially in a radial graph, with the first state or s1 at the
0-radian location. Accept states are marked by filled green dots.
Since each lookup table maps out the directional next-state
transition for all possible state-input pairs, without loss of
generality and for clarity, only the upper-triangular destination-
state connections are considered in the connectivity graphs, with
self-transitions ignored. The width of the edge is proportional to
the strength or frequency of state transition, and the colormap
indicates the input composition. Figure 5 shows all the first
network (out of five in the KAARMA chain) FSMs for each of
the 10 word models, while Figure 6 shows all five networks for the
word model “six”. These connectivity graphs clearly illustrate that
while all the FSMs share the same state and input alphabets, they
exhibit distinctly different dynamics. For example, not all states
serve as destination or next state.

TABLE 3 | Comparisons of KAARMA chain classifiers with HMMs using an
equivalent number of states and a mixture of eight Gaussians per state. Only
12 MFCC coefficients were used, without log energy and time derivatives.
Similarly, only 12 channels of pulse trains were used.

5-State HMM

Input Type Training (%) Testing (%)

MFCC 98.74 98.00

Pulse Train Rate Code 93.74 93.23

5-Network KAARMA Chain

Input Type Training (%) Testing (%)

MFCC Sequence Ordering L2R → 99.33 98.62
R2L ← 99.48 98.31
99.78 99.08

Pulse Train Rate Code L2R → 99.04 91.85
99.56 94.54

Temporal Code L2R → 96.70 93.54
R2L ← 97.33 92.46

(Schoenberg Kernel) # 98.56 95.23

TABLE 4 | Performance of discretized 5-network KAARMA chains using MFCCs for the forward, left-to-right (L2R or →) sequence processing.

Threshold Input Alphabet State Alphabet Training Testing

qinput qstate Size Size Accuracy (%) Accuracy (%)

0.2 0.8 28,903 18 98.93 97.15
0.3 0.8 8,116 13 98.41 96.38
0.4 0.8 2,344 10 95.78 94.31
0.5 0.8 770 10 89.59 86.38
0.5 0.5 770 14 92.96 90.69
0.5 0.4 770 17 93.52 92.46
0.5 0.3 770 25 93.78 92.00
0.5 0.2 770 41 93.89 92.77
0.5 0.1 770 148 94.00 92.77
0.4 0.2 2,344 53 97.96 95.31

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 56838410

Li and Príncipe Pulse Edge Computing

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

FIGURE 4 | Performance as a function of quantization thresholds. Input alphabet is uniquely determined by its quantization factor qinput (e.g., the solid blue line
shows a constant alphabet size of 770 for a fixed threshold qinput � 0.5, regardless of state quantization values), whereas the state alphabet is a function of both the input
and state quantizations (e.g., dashed black line shows a reduced state alphabet as the input quantization increases, even with the state quantization fixed at qstate � 0.8).
Certain states become unreachable when the data resolution is reduced. Clearly, latent states are parsimonious descriptors of nonlinear dynamics: good
recognition accuracies are maintained using only a small subset of the original state space points, i.e., most state variables orbit a few attractors.

FIGURE 5 | State connectivity graphs for the first networks of the ten SPARK word models, with training accuracy of 97.96% and testing accuracy of 95.31%: (A)
corresponds to the first network of the 5-network KAARMA chain (denoted by 1/5) word model for the digit “zero”, etc. Accept states are marked by filled green dots.
Only the upper-triangular destination-state connections are considered in the connectivity graphs, with self-transitions ignored.

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 56838411

Li and Príncipe Pulse Edge Computing

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Similarly, we can generate lookup tables for pulse trains, as
shown in Table 5. Overall, there is a decrease in performance
when using spike-based front-ends, as shown in Table 3. This is
not only a testament to the ingenuity and prevalence of the
human-engineered MFCC as the de facto speech feature, but also
to the fact that the focus of this research is not to optimize the
feature engineering, but rather to demonstrate, as a proof-of-
principle, that a simple lookup table achieves competitive result
using pulse trains. Despite this drop in performance, we have
shown that pulse-train inputs are more robust to noise than
MFCCs (Li and Príncipe, 2018b). Like the case involving MFCCs,
good performances are obtained using FSMs operating on pulse
trains, by tuning the clustering threshold values. We observe that
reversing the pulse train sequence produced not only different
grammars or automata, but also alphabets of different sizes using
the same cluster thresholds. This is because the estimate for the
conditional intensity function of a point process is now computed
backwards, and for two pulse trains with different spike count, the
padding is now on the opposite end, creating different, shifted
pulse timing pairs. We see that a good performance of 94.54%
testing accuracy (−0.69% from the unquantized pulse-train
performance) is achieved using fewer than 7,000 input
patterns and a state size of fewer than 200.

The aim of SENSA is to trade a small performance drop in the
digitization of the hardware-deployed model for orders of
magnitude decrease in power consumption and footprint.
Compared to the SNN methods with adaptive weights, the only
computation involved to operate these automata over pulse trains
is indexing: locate the closest pulse pattern in the input alphabet,
which can be optimized in hardware since the similarity metric is
event driven and accumulated over time with each pulse timing,
then retrieve the next state automatically from memory.

3.2 Field Programmable Gate Array Finite
State Machines Implementation
Once the finite state machines are extracted, the hardware
implementation is very straightforward. The design of the speech
recognition automata was done in Verilog, with the functional
correctness of the design verified by comparing its results with that
obtained from the software implementation. Without loss of
generality, we describe the design implement for the first network
of the word model “zero” in the 5-network KAARMA chain for
MFCC input. Since the pulse train implementation is also memory
based, we will derive a general formula for the power consumption
and footprint based on the lookup table size.

FIGURE 6 | State connectivity graphs for the 5-network KAARMA chain corresponding to the word model “six”.

TABLE 5 | Performance comparison of SPARK (5-network KARMA chains) using pulse trains with other spike-based methods.

SPARK (TI-46, 16 speakers)

Threshold Input Alphabet Size State Alphabet
Size

Training Accuracy (%) Testing Accuracy (%)

qinput qstate → ← → ← → ← # → ← #

0.30 0.4 1,353 1,362 34 45 80.85 86.96 90.59 79.54 85.38 90.54
0.25 0.4 2,968 2,960 34 45 87.07 91.56 94.37 83.77 89.23 92.92
0.20 0.4 6,951 6,905 34 45 91.15 93.00 95.41 87.85 91.54 93.69
0.20 0.2 6,951 6,905 150 191 94.37 94.26 96.37 90.62 92.38 94.54

Pulse or Spike Front-End for Spoken Digit Recognition (TI-46)

Model (→) Input Spike Channels Network Size Speakers Accuracy (%)

5-Network KAARMA Chain 12 1880center × 5network × 10word 16 93.54
SENSA-SPARK 12 1table lookup × 5network × 10word 16 90.62
Digital LSM Zhang et al. (2015) 83 83neuron × 135neuron × 10neuron 16 92.30
SWAT SNN Wade et al. (2010) 180 180neuron × 5040neuron × 10neuron 8 95.25
LSM Verstraeten et al. (2005) 39 39neuron × 1232neuron × 10neuron 5 95.50

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 56838412

Li and Príncipe Pulse Edge Computing

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

First, indexing of the data is performed using the Euclidean
distance between the input vector and the input alphabet, which
determines the location of the closest input symbol in the lookup
table or FSM. With this index and the current state (initial state is
fixed for all lookup tables), we retrieve the next state from
memory. The above set of steps are repeated until we reach
the end of the input sequence. The final state determines the
classification or recognition of the entire sequence based on its
sign (accept/reject), since the output component of the state
vector is trained using ±1 label.

Figure 7 shows the top-level schematic of the implementation
in FPGA. The data for the lookup table (state transitions) with
size 2,344 × 53 (input alphabet size by state alphabet size) and the
input alphabet with size 12 × 2,344 (feature vector dimension by
input alphabet size) are stored in read-only RAM. The lookup
table contains the indices (1–53) of the next states, addressed by
the input-state coordinates. In order to store these values in RAM,
they are converted to binary representation using regular binary
to decimal converter. The input array consists of 12D column
vectors corresponding to each prototype in the input alphabet. To
properly represent the values inside this array in binary, with the
minimal number of bits, we first quantized them, then converted
to binary. Here, the quantized values are represented with 8 bits,

in the form of two’s complement to represent the positive and
negative values. Binary representation of the input data is
obtained in the same way as the input alphabet, using 8-bit
binary.

The only computationally expensive operation is locating the
nearest neighbor of the current input in the alphabet using
distance. We parallelized this operation by implementing a
multileveled datapath, shown in Figure 8. Both inputs to the
datapath are 12D vectors. Level 1 of datapath subtracts pairwise
elements of both inputs simultaneously across all 12 dimensions. Level
2 squares the outputs obtained from the previous level. Levels 3, 4, and
5 aggregate the squares obtained from Level 2. Register level is present
between the output of each level and the input of next level. Using this
datapath structure, it takes six clock cycles to calculate the Euclidean
distance between one pair of inputs. Note, the datapath can be
pipelined to improve performance by increasing throughput.

The controller is implemented as a five-stage FSM, which
generates control signals for datapath and read addresses for the
RAMs. It outputs the sequence of state transitions for the given
set of data inputs. The segregation of the computation and control
function of the system makes it easier to accommodate future
improvements such as pipelining the datapath, etc.

For a single keyword acoustic model in FSM using
conventional MFCC features, we obtained the following power
and footprint measurements, shown in Table 6, using 10 kHz
clock and SMIC 0.18 μm process technology. When scaled to
state-of-the-art fabrication technologies, we can expect sub μW
power consumption, effectively moving into the nW range, as
shown in Figure 9. This is superior to industry standard for

FIGURE 7 | Top level schematic for FSM implementation in FPGA hardware using digital data.

FIGURE 8 | Multilevel datapath for computing the Euclidean distance
between the input data (12D) and the input alphabet, which takes six clock
cycles.

TABLE 6 | Summary of power consumption and footprint of a single FSM or
lookup table.

Lookup
RAM Size (bits)

Power (μW) Area (mm2)

3,392*8 15.3 1.0
2,544*8 14.1 0.92
1,696*8 10.5 0.83

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 56838413

Li and Príncipe Pulse Edge Computing

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

hardware-based keyword spotting using similar input. The power
P and area A scaling are as follows

AL2 � AL1
L2
L1

()2

, (20)

PL2 � PL1
L2
L1

() VL2

VL1
()

2

, (21)

where L1 and L2 are the characteristic lengths of the two different
processes, with V180nm � 1.8 V, V90nm � 1.2 V, V65nm � 1.2 V,
V45nm � 1.1 V, V32nm � 1 V, and V14nm � 0.7 V. According to
recently published research (28 nm CMOS with power
consumption of 141 μW), our figures are at least two orders of
magnitude better than DL-based solutions (Zheng et al., 2019).

The hardware implementation for pulse trains is similar to
that of real-valued feature vectors. Instead of using the Euclidean
distance between two fixed-dimension vectors to locate the
closest pattern in the input alphabet of an FSM, the distance
between the estimated conditional intensity functions of the
Schoenberg kernel is used. As discussed above, this amounts
to the squared pairwise pulse-timing differences between two
pulse trains, where the pulse train with the fewer pulse count is
padded with the necessary number of pulse timings
corresponding to the window duration. This can be computed
piecewise in time, whenever a pulse is received.

To further reduce the power consumption and footprint, the
hardware embedment can be implemented in an application
specific integrated circuit (ASIC). In general, the front end of
SENSA will consist of a filterbank with IFC at each output,
converting the analog signal into sparse pulse representation,
where the amplitude information is encoded in the inter-pulse
interval. SPARK is then used to derive nonparametric solution
directly from the multichannel pulse trains and embed the
intelligence at the edge using automata. Another way to
minimize each automaton is to limit the pulse patterns or
prototypes in the alphabet by reducing the window or frame
size. At sufficiently small frames, we will be operating at the

resolution of a single pulse, i.e., binary alphabet with a value of
either one (pulse) or zero (no pulse). We also envision a network
of simple distributed SPARK embedded hardware performing
in concert to solve more complex problems and make better
intelligent decisions at the edge.

4 CONCLUSION

The SENSA framework leverages data-driven intelligence
with biologically-inspired efficiency for downscaling
complex machine learning solutions to deliver edge
intelligence. As a proof-of-concept, we demonstrated the
feasibility of SPARK (one specific formulation of SENSA
using the theory of RKHS) to operate an automatic speech
recognition system using only lookup tables. We can apply
this methodology to other time series, not just limited to
acoustic signal, using the appropriate analog-to-pulse
converter. This creates countless opportunities for novel
applications that benefit from ultra-low power, ultra-fast
computation, and with improved noise robustness,
particularly in delivering resource-constrained intelligence
to the edge of IoT.

In the future, we will design and fully implement an ASR for
isolated and continuous speech in hardware operating at the
pulsing resolution of zeros and ones. Furthermore, we will
implement and test reconfigurable FSMs in hardware to enable
user customization on pre-trained models using one-shot or few-
shot learning.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://catalog.ldc.upenn.edu/LDC93S9.

AUTHOR CONTRIBUTIONS

All authors listed, have made substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

This work was partially supported by DARPA Contracts N66001-
10-C-2008 and N66001-15-1-4054, the Lifelong Learning
Machines program from DARPA/MTO grant FA9453-18-1-
0039, and NSF contract 1648329.

ACKNOWLEDGMENTS

Wewould like to acknowledge Gabriel Nallathambi for his help in
the hardware analysis and pulse-based arithmetic.

FIGURE 9 | Power consumption and footprint scaling of a single FSM to
more advanced fabrication technology.

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 56838414

Li and Príncipe Pulse Edge Computing

https://catalog.ldc.upenn.edu/LDC93S9
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

REFERENCES

Angluin, D., and Smith, C. H. (1983). Inductive Inference: Theory and Methods.
ACM Comput. Surv. 15, 237–269. doi:10.1145/356914.356918

Aronszajn, N. (1950). Theory of Reproducing Kernels. Trans. Amer. Math. Soc. 68,
337. doi:10.1090/s0002-9947-1950-0051437-7

Cho, Y., and Saul, L. K. (2009). “Kernel Methods for Deep Learning,” in Advances
in Neural Information Processing Systems 22. Editors Y. Bengio, D. Schuurmans,
J. D. Lafferty, C. K. I. Williams, and A. Culotta (Vancouver, BC: Curran
Associates, Inc.), 342–350.

Chomsky, N. (1956). Three Models for the Description of Language. IEEE Trans.
Inform. Theor. 2, 113–124. doi:10.1109/tit.1956.1056813

Cisco (2020). Cisco Annual Internet Report (2018–2023) White Paper. Tech. rep.
Cisco Systems, Inc

Cisco (2019). Redefine Connectivity by Building a Network to Support the Internet
of Things. Tech. rep. Cisco Systems, Inc.

Collobert, R., andWeston, J. (2008). “A Unified Architecture for Natural Language
Processing,” in ICML ’08:Proceedings of the 25th International Conference on
Machine Learning, Helsinki, Finland, July 5-9, 2008, (New York, NY, USA:
ACM), 160–167. doi:10.1145/1390156.1390177

Davis, S., and Mermelstein, P. (1980). Comparison of Parametric Representations
for Monosyllabic Word Recognition in Continuously Spoken Sentences. IEEE
Trans. Acoust. Speech, Signal. Process. 28, 357–366. doi:10.1109/
tassp.1980.1163420

Dura-Bernal, S., Li, K., Neymotin, S. A., Francis, J. T., Principe, J. C., and Lytton,W.
W. (2016). Restoring Behavior via Inverse Neurocontroller in a Lesioned
Cortical Spiking Model Driving a Virtual Arm. Front. Neurosci. 10, 28.
doi:10.3389/fnins.2016.00028

Feichtinger, H. G., Príncipe, J. C., Romero, J. L., Singh Alvarado, A., and Velasco, G.
A. (2012). Approximate Reconstruction of Bandlimited Functions for the
Integrate and Fire Sampler. Adv. Comput. Math. 36, 67–78. doi:10.1007/
s10444-011-9180-9

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The Spinnaker
Project. Proc. IEEE. 102, 652–665. doi:10.1109/jproc.2014.2304638

Gerstner, W., and Kistler, W. M. (2002). Spiking Neuron Models: Single Neurons,
Populations, Plasticity. Cambridge, U.K.: Cambridge University Press

Gold, E. M. (1978). Complexity of Automaton Identification from Given Data. Inf.
Control. 37, 302–320. doi:10.1016/s0019-9958(78)90562-4

Harrison, M. (1978). Introduction to Formal Language Theory. Boston, MA, USA:
Addison-Wesley

Haykin, S. (1998). Neural Networks: A Comprehensive Foundation. 2nd edn..
Upper Saddle River, NJ, USA: Prentice Hall PTR)

Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A. R., et al. (2012). Deep Neural
Networks for Acoustic Modeling in Speech Recognition: The Shared Views of
Four Research Groups. IEEE Signal. Process. Mag. 29, 82–97. doi:10.1109/
MSP.2012.2205597

Huang, P.-S., Avron, H., Sainath, T. N., Sindhwani, V., and Ramabhadran, B. (2014).
“Kernel Methods Match Deep Neural Networks on TIMIT,” in 2014 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Florence, Italy, 4-9 May 2014, 205–209. doi:10.1109/ICASSP.2014.6853587

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet Classification
with Deep Convolutional Neural Networks,” in Advances in Neural
Information Processing Systems 25. Editors F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger (Lake Tahoe, Nevada: Curran Associates,
Inc.), 1097–1105.

Li, K., and Príncipe, J. C. (2018a). Biologically-inspired Spike-Based Automatic
Speech Recognition of Isolated Digits over a Reproducing Kernel hilbert Space.
Front. Neurosci. 12, 194. doi:10.3389/fnins.2018.00194

Li, K., and Príncipe, J. C. (2018b). “Surprise-novelty Information Processing for
Gaussian Online Active Learning (SNIP-GOAL),” in 2018 International Joint
Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, July 8-13,
2018, 1–6. doi:10.1109/IJCNN.2018.8489555

Li, K., and Principe, J. C. (2019). Functional Bayesian Filter. arXiv. 1911.10606
[eess.SP]

Li, K., and Príncipe, J. C. (2016). The Kernel Adaptive Autoregressive-Moving-
Average Algorithm. IEEE Trans. Neural Netw. Learn. Syst. 27, 334–346.
doi:10.1109/tnnls.2015.2418323

Li, K., and Príncipe, J. C. (2017). Transfer Learning in Adaptive Filters: The Nearest
Instance Centroid-Estimation Kernel Least-Mean-Square Algorithm. IEEE
Trans. Signal. Process. 65, 6520–6535. doi:10.1109/tsp.2017.2752695

Liu, W., Príncipe, J. C., and Haykin, S. (2010). Kernel Adaptive Filtering: A
Comprehensive Introduction. Hoboken, NJ, USA: Wiley.

Maass, W., Legenstein, R. A., and Bertschinger, N. (2005). “Methods for Estimating
the Computational Power andGeneralizationCapability ofNeuralMicrocircuits,”
in Advances in Neural Information Processing Systems 17. Editors L. K. Saul,
Y. Weiss, and L. Bottou (Vancouver, BC: MIT Press), 865–872.

Maass, W. (1997). Networks of Spiking Neurons: The Third Generation of Neural
Network Models. Neural Networks. 10, 1659–1671. doi:10.1016/S0893-
6080(97)00011-7

McCulloch, W. S., and Pitts, W. (1943). A Logical Calculus of the Ideas Immanent
in Nervous Activity. Bull. Math. Biophys. 5, 115–133. doi:10.1007/bf02478259

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J., Akopyan,
F., et al. (2014). A Million Spiking-Neuron Integrated Circuit with a Scalable
Communication Network and Interface. Science 345, 668–673. doi:10.1126/
science.1254642

Minsky, M. L. (1967). Computation: Finite and Infinite Machines. Englewood
Cliffs, NJ, USA: Prentice-Hall

Nallathambi, G., and Principe, J. C. (2020). Theory and Algorithms for Pulse Signal
Processing. IEEE Trans. Circuits Syst. Regular Pap. 67 (8), 2707–2718.
doi:10.1109/tcsi.2020.2981318

Paiva, A. R. C., Park, I., and Príncipe, J. C. (2009). A Reproducing Kernel Hilbert
Space Framework for Spike Train Signal Processing. Neural Comput. 21,
424–449. doi:10.1162/neco.2008.09-07-614

Park, I. M., Seth, S., Paiva, A. R. C., Li, L., and Principe, J. C. (2013). Kernel Methods
on Spike Train Space for Neuroscience: A Tutorial. IEEE Signal. Process. Mag.
30, 149–160. doi:10.1109/msp.2013.2251072

Park, I. M., Seth, S., Rao, M., and Príncipe, J. C. (2012). Strictly Positive-Definite
Spike Train Kernels for point-process Divergences. Neural Comput. 24,
2223–2250. doi:10.1162/neco_a_00309

Patterson, R. D., Nimmo-Smith, I., Holdsworth, J., and Rice, P. (1987). Annex B of
the SVOS Final Report: An Efficient Auditory Filterbank Based on the
Gammatone Function. Appl. Psychol., 1–33.

Rahimi, A., and Recht, B. (2007). “Random Features for Large-Scale Kernel
Machines,” in NIPS’07:Proceedings of the 20th International Conference on
Neural Information Processing Systems, Vancouver, B.C., Canada, December
3-6, 2007, (USA: Curran Associates Inc.), 1177–1184.

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion
of Continuous-Valued Deep Networks to Efficient Event-Driven Networks for
Image Classification. Front. Neurosci. 11, 682. doi:10.3389/fnins.2017.00682

Schölkopf, B., Herbrich, R., and Smola, A. J. (2001). “A Generalized Representer
Theorem,” in Proceedings of the 14th Annual Conference. Computational
Learning Theory, Amsterdam, Netherlands, July 16-19, 2001, 416–426.
doi:10.1007/3-540-44581-1_27

Shi, W., Cao, J., Zhang, Q., Li, Y., and Xu, L. (2016). Edge Computing: Vision and
Challenges. IEEE Internet Things J. 3, 637–646. doi:10.1109/jiot.2016.2579198

Siegelmann, H. T., and Sontag, E. D. (1995). On the Computational Power of
Neural Nets. J. Comp. Syst. Sci. 50, 132–150. doi:10.1006/jcss.1995.1013

Singh Alvarado, A., Rastogi, M., Harris, J. G., and Príncipe, J. C. (2011). “The
Integrate-And-Fire Sampler: A Special Type of Asynchronous Σ-ΔModulator,”
in 2011 IEEE International Symposium of Circuits and Systems (ISCAS), Rio de
Janeiro, Brazil, May 15-18, 2011, 2031–2034.

Verstraeten, D., Schrauwen, B., and Campenhout, J. V. (2005). “Recognition of
Isolated Digits Using a Liquid State Machine,” in Proceeding of the SPS-DARTS
2005, Antwerp, Belgium, April 19-20, 2005, 135–138.

Wade, J. J., McDaid, L. J., Santos, J. A., and Sayers, H. M. (2010). SWAT: A Spiking
Neural Network Training Algorithm for Classification Problems. IEEE Trans.
Neural Netw. 21, 1817–1830. doi:10.1109/tnn.2010.2074212

Widrow, B., and Stearns, S. D. (1985). Adaptive Signal Processing. (USA: Prentice-
Hall, Inc.)

Wilson, A. G., Hu, Z., Salakhutdinov, R., and Xing, E. P. (2016). “Stochastic Variational
Deep Kernel Learning,” in NIPS’16:Proceedings of the 30th International
Conference on Neural Information Processing Systems, Barcelona Spain,
December 5 - 10, 2016 (USA: Curran Associates Inc.), 2594–2602.

Wolpert, D. H. (1996). The Lack of A Priori Distinctions between Learning
Algorithms. Neural Comput. 8, 1341–1390. doi:10.1162/neco.1996.8.7.1341

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 56838415

Li and Príncipe Pulse Edge Computing

https://doi.org/10.1145/356914.356918
https://doi.org/10.1090/s0002-9947-1950-0051437-7
https://doi.org/10.1109/tit.1956.1056813
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1109/tassp.1980.1163420
https://doi.org/10.1109/tassp.1980.1163420
https://doi.org/10.3389/fnins.2016.00028
https://doi.org/10.1007/s10444-011-9180-9
https://doi.org/10.1007/s10444-011-9180-9
https://doi.org/10.1109/jproc.2014.2304638
https://doi.org/10.1016/s0019-9958(78)90562-4
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1109/ICASSP.2014.6853587
https://doi.org/10.3389/fnins.2018.00194
https://doi.org/10.1109/IJCNN.2018.8489555
https://doi.org/10.1109/tnnls.2015.2418323
https://doi.org/10.1109/tsp.2017.2752695
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1007/bf02478259
https://doi.org/10.1126/science.1254642
https://doi.org/10.1126/science.1254642
https://doi.org/10.1109/tcsi.2020.2981318
https://doi.org/10.1162/neco.2008.09-07-614
https://doi.org/10.1109/msp.2013.2251072
https://doi.org/10.1162/neco_a_00309
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1007/3-540-44581-1_27
https://doi.org/10.1109/jiot.2016.2579198
https://doi.org/10.1006/jcss.1995.1013
https://doi.org/10.1109/tnn.2010.2074212
https://doi.org/10.1162/neco.1996.8.7.1341
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Zhang, Y., Li, P., Jin, Y., and Choe, Y. (2015). A Digital Liquid State Machine with
Biologically Inspired Learning and its Application to Speech Recognition. IEEE
Trans. Neural Netw. Learn. Syst. 26, 2635–2649. doi:10.1109/
tnnls.2015.2388544

Zheng, S., Ouyang, P., Song, D., Li, X., Liu, L., Wei, S., et al. (2019). An Ultra-low
Power Binarized Convolutional Neural Network-Based Speech Recognition
Processor with On-Chip Self-Learning. IEEE Trans. Circuits Syst. 66,
4648–4661. doi:10.1109/tcsi.2019.2942092

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Li and Príncipe. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 56838416

Li and Príncipe Pulse Edge Computing

https://doi.org/10.1109/tnnls.2015.2388544
https://doi.org/10.1109/tnnls.2015.2388544
https://doi.org/10.1109/tcsi.2019.2942092
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

	Biologically-Inspired Pulse Signal Processing for Intelligence at the Edge
	1 Introduction
	2 Methods
	2.1 Sparse Embodiment Neural-Statistical Architecture
	2.2 Model Building Using Kernel Adaptive AutoRegressive-Moving-Average
	2.2.1 State Space Representation in the Reproducing Kernel Hilbert Space

	2.3 Reproducing Kernel Hilbert Space for Pulse Trains
	2.4 Kernel Adaptive AutoRegressive-Moving-Average Chain and Directional Learning
	2.5 Rule Extraction for Sparse-Embodiment Deployment in Edge Computing

	3 Simulation Results
	3.1 Automatic Speech Recognition System Using Finite State Machines
	3.2 Field Programmable Gate Array Finite State Machines Implementation

	4 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

