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Abstract—ECG signals are essential in diagnosing cardiovascu-
lar diseases (CVD). Automatic localization of ECG fiducial points
helps in the end-point detection and tracking of CVD. Nowadays,
collecting ECG signals is more accessible due to the availability of
wearable devices. We develop an algorithm to estimate the peaks
of P and T waves and the onset and offset of the QRS complex.
We evaluate it using ECG signals collected using a wearable
device named HEMOTAG. The algorithm combines a rule-based
method for heartbeat detection and a deep CNN for fiducial
points localization. Three datasets are used to train and evaluate
the proposed algorithm. The first and second datasets are QT and
Lobachevsky University Electrocardiography Database (LUDB),
which are used in ten-fold cross-validation. The third dataset is
collected using HEMOTAG, which is used as a held-out set. A
percentage of error (PoE) less than 1.75% is achieved based on
the cross-validation, and PoE less than 2.42% is achieved based
on the held-out set.

Index Terms—Wearable devices, electrocardiography, ECG
fiducial points, deep learning, cardiovascular disease.

I. INTRODUCTION
Wearable devices have been developed to collect surface

electrocardiogram (ECG), increasing its ease of use and acces-
sibility [1]. These devices are employed for the early detection
and long-term monitoring of cardiovascular diseases (CVD)
[2]. Heartbeat detection and fiducial points localization in ECG
signals are the key steps for end-point detection of CVD. The
fiducial points include the onsets, offsets, and peaks of P, QRS,
and T waves. These points are used to measure different time
intervals in a heartbeat and help detecting and interpreting
abnormalities, if any.

Heartbeat detection in ECG signals is well-established in the
field with a high accuracy using traditional rule-based methods
[3], [4]. However, these methods are prone to error when used
for detecting fiducial points and rule adaptation is required
when tested in new domains [5]. Recently, complex and deep
learning algorithms are proposed to increase the accuracy of
fiducial points’ localization or delineation by utilizing their
data-driven feature extraction ability [5]–[8]. In the work of
Kalyakulina et al. and Abrishami et al., the localization is
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formulated as a regression problem where the models output
continuous values [6]–[8]. Jimenez-Perez et al. [5] formulated
it as a binary classification problem where the models detect
the presence of specific waveforms [5]. These algorithms
are not evaluated on ECG signals collected using wearable
devices, and their performance on ECG signals with different
CVD is not assessed.

The collected ECG signals using wearable devices are im-
pacted by noise at a higher rate than signals collected using tra-
ditional devices used in clinical settings. Deep learning models
with the proper data augmentation methods to synthesize the
noise during training can generalize better than rule-based
methods. Therefore, we develop an algorithm to localize ECG
fiducial points that combines a rule-based heartbeat detection
method and a deep convolutional neural network (CNN).
We use the Pan-Tompkins method [3], [4] as the rule-based
method to localize R points. As a standardization method,
the R points are used to segment ECG signals into multiple
windows where each window contains a single heartbeat. The
deep CNN localizes the peaks of P and T waves and the onset
and offset of the QRS complex. Our contributions in this work
are

1) We utilized and introduced new transformation-based
data augmentation methods.

2) We analyzed the algorithm’s performance for different
groups of patients based on CVD. The analysis is
essential since the intention is to use the algorithm in a
clinical setting for people with possible CVD.

3) We evaluated the developed algorithm on ECG signals
collected using a wearable device.

Being trained on an expanded dataset of multiple training
sets, and due to different regularization techniques used, we
could successfully train seven convolutional layers, which
makes the deep CNN able to localize even the onset and offset
features of the QRS complex, which is more challenging when
compared with localizing a peak feature in P and T waves, as
targeted by [8].

The rest of the paper is structured as follows: the datasets
and preprocessing section describes three datasets utilized for
the training and evaluation of the proposed algorithm and
preprocessing steps; the methods section describes the pro-
posed algorithm; the results section reports the data splits and
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metrics used for evaluation, and the algorithm performance.
We compare the results of the proposed algorithm with other
models proposed in the literature and report its limitations in
the discussion section. The last section is the conclusion.

II. DATASETS AND PREPROCESSING

Two retrospective datasets are used in this work which
are QT [9] and Lobachevsky University Electrocardiography
Database (LUDB) [6], [10]. Both datasets are retrieved from
PhysioNet, a research resource for physiologic signals [11].
In addition, an in-house, prospective dataset that is collected
using a wearable device is used. The device is HEMOTAG,
shown in Figure 1, that captures cardiac vibrations and ECG.

A. QT dataset

QT dataset [9] contains two-channel ECG signals recorded
for 15 minutes at 250Hz sampling frequency. The fiducial
points (i.e., onset, peak, and offset for P, QRS, T, and U waves)
in these signals were measured using an automatic algorithm
and then partially corrected by two cardiologists. The auto-
matic annotations were performed on the whole recordings
and for each channel separately. The manual annotations were
performed for few seconds in two passes considering both
channels (i.e., single annotations were provided from both
channels and not separate as in the automatic annotations). The
annotated segments have at least 30 beats. One cardiologist
annotated the signals for all the subjects, and the other
annotated the signals for eleven subjects only.

There are 105 subjects in the QT dataset divided into seven
subsets chosen from among existing and high-variable ECG
databases. The subsets are the MIT-BIH Arrhythmia, the MIT-
BIH ST Change, the MIT-BIH Supraventricular Arrhythmia,
the MIT-BIH Normal Sinus Rhythm, the European ST-T,
sudden death patients from the BIH, and the MIT-BIH Long-
Term ECG.

B. LUDB dataset

LUDB dataset [6], [10] contains twelve-channel ECG sig-
nals recorded for 10 seconds at 500Hz sampling frequency.
The signals were collected from 2017 to 2018. The wave-
forms’ fiducial points in these signals were annotated manually
by cardiologists. The manual annotations were performed on
the whole duration of the recordings for each of the twelve
channels separately. There are 200 subjects in LUDB dataset.
One hundred forty-three of them were healthy, the others had
various cardiovascular diseases, and some had pacemakers.

C. HEMOTAG dataset

HEMOTAG dataset, among other signals, contains one-
channel ECG recorded for 30 seconds at 488Hz sampling
frequency using HEMOTAG, a small portable device that uses
micro-sensors to capture cardiac vibrations and electrocar-
diogram, transduced via thoracic electrodes [12]–[15]. The
data was collected in 2021, and manually annotated by an
specialist for the peaks of P and T waves and the onset and
offset of the QRS complex. The manual annotations were

performed for the whole duration of the recordings. There
were 11 subjects in the HEMOTAG dataset. Seven of them
were male, and four were female. The subjects had various
CVD such as atrial fibrillation, ischemic cardiomyopathy, and
previous myocardial infarction.

The research material from human participants recorded
under IRB Protocol Number HT-17-VV-010. HEMOTAG is
a registered trademark by Aventusoft, Florida. Patent No: US
10165985 B2, Patent No: US 8475396 B2, US 2017/0199962
A1, US 10531839 B2, US 2020/0170527 A1. Patents pending.

D. Preprocessing

In this work, we preprocessed the signals in both the QT and
the LUDB datasets for noise removal and data standardization
to train and evaluate the CNN model.

For the QT dataset, the first step was filtering the signals
using a band-pass filter (0.5-40 Hz) to help remove the bias
and high-frequency noise [16]. The second step was using the
second-pass manual annotations done by the first cardiologist
as they are more accurate than the first-pass annotation, as
used in et al. [5]. Also, we used the automatic heartbeat
detection (i.e., R points). The third step is selecting the beats
with annotations for all fiducial points to be used for training
and validation. The main reason for this step is that some of
the heartbeats have missing manual annotations.

For LUDB, the first step was downsampling the signals to
a 250 Hz sampling frequency. The second step was selecting
only channels I and II and the associated annotations. We
chose these channels since they show similar waveforms to
the collected signals using HEMOTAG. The third step was
filtering the signals using a band-pass filter (0.5-40 Hz).

The last step was segmenting the signals as described
in subsection III-B. We used the automatic annotations of
R points in the QT dataset and the manual annotations of
R points in the LUDB dataset for segmentation. The Pan-
Tompkins model described in subsection III-A was used in
the HEMOTAG dataset. The combination of both LUDB and
QT datasets resulted in a set of 305 subjects. This set had 5.5k
segments with full manual annotations from channel I of the
QT dataset and channels I and II from the LUDB dataset. Also,
it had 96k segments with automatic annotations from the QT
dataset (93.2k segments from channels I and 2.8k segments
from channel II).

III. METHODS

The proposed algorithm for the localization of fiducial
points in 1-lead ECG signals has three main components, as
shown in Figure 1. The first component is the Pan-Tompkins
model for R-point localization, the second component is a
segmentation of heartbeats, and the third component is a CNN
model for fiducial points localization.

A. Pan-Tompkins model for R-point localization

The localizing of R points in ECG recording is well-
established in the field; thus, we utilized previous Pan-
Tompkins models to perform this operation [3], [4]. The
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Fig. 1. The architecture of the proposed algorithm for the localization of
fiducial points in 1-lead ECG signals. 30-sec ECG signal collected using
HEMOTAG is shown as an example for the output of each component.

output from this component is the location of the R points
({tir}

Nbeats
i=1 ) for each heartbeat as shown in Figure 1.

B. Segmentation

Each detected heartbeat is segmented into a single window
of size 300 samples in this step. The use of a fixed window
length is a requirement for CNN networks. Each window is
centered around the R point. We follow a few steps to ensure
each widow has only one heartbeat. The first step is calculating
the average beat-to-beat interval (tbb in samples) using the R
points. The second step constructs a window by starting from
the location tir − (tbb/2) to tir + (tbb/2). The third step is
padding the begging and end of the window to 300 samples by

repeating the sample tir−(tbb/2) and tir+(tbb/2), respectively.
Figure 1 shows an example of this component’s output.

C. Convolutional Neural Network for fiducial points localiza-
tion

CNN is a data-driven model that is constructed of con-
volutional filters and pooling operations divided into several
layers. These filters and pooling operations make the CNN
shift-invariant. CNN networks are successfully applied to
solve regression problems in biomedical applications [17], [18]
such as estimating the heart rate using Photoplethysmography
(PPG) sensors [19], estimating the severity of Parkinson’s
disease (PD) [20], and estimating positive and negative affects
and human behavior using physiological signals from wearable
sensors [18], [21]. The CNN network can extract features
from the raw signals and then perform the classification or
regression through the fully-connected layers.

1) Architecture: Figure 2 shows the proposed 1-D CNN
that takes the raw ECG windows as input and estimates four
outputs representing P-wave peak, onset and offset of QRS
complex, and T-wave peak. The network consists of four
convolutional blocks. The first block consists of two layers,
each with 64 convolutional filters of size 1 × 3, that are
followed by a max-pooling layer. The second and third blocks
also consist of two layers but deeper by doubling the number
of filters to 128. The fourth block has one convolutional layer
with 64 filters followed by a max-pooling layer and a flatten
layer to transfer the feature maps to a vector before feeding it
to two fully-connected layers (fc). The first fc has 512 nodes,
and the output fc has four nodes for each of the fiducial points.

2) Training procedure: In both the QT and LUDB datasets,
a relatively small number of heartbeats were manually anno-
tated by cardiologists to mark all fiducial points, but a large
number of heartbeats were automatically annotated. Training
by considering only the scarce manual annotations will lead
to an overfitted model. Therefore, four types of regularization
techniques were used during training to prevent the model
from overfitting the training ECG windows and thus make it
generalize better on unseen ECG windows [22].

The first technique was training the network on noisy labels
(i.e. the automatic annotations in QT dataset) and then fine-
tuning it using the accurate labels (i.e., the manual annotations
in both QT and LUDB datasets). The first step was performed
for 200 epochs, and the second step was performed for 100
epochs. An early stopping procedure was implemented in both
steps with a patience parameter of 20. The second technique
was adding dropout layers before each fully-connected layer
during training [23]. The third technique was adding L2 norm
as a regularization parameter to the loss function. The fourth
technique was applying eight signal augmentation methods.
Six of them were performed based on the methods proposed by
Jimenez-Perez et al. [5], and we developed two novel methods.
The augmentation methods are:

• White Gaussian noise with a signal-to-noise ratio (SNR)
between 15 to 30 dB.
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Fig. 2. The CNN network proposed in this work to localize fiducial points in ECG windows. The shape of the output of each convolutional block is shown
after each block.

• Random periodic spikes with an SNR between 5 to 30
and a period between 50 to 150 samples.

• Powerline noise with an SNR between 15 to 30 and and
a frequency between 37.5 to 62.5 Hz.

• Baseline wander with an SNR between 15 to 30 and and
a frequency between 0.11 to 0.19 Hz.

• Pacemaker spikes with an SNR between 5 to 30.
• Amplifier saturation with a threshold representing per-

centage of the signal to be saturated in the range of 0 to
50%.

• Left/right shifting with a range 50 samples of left shift
to 50 samples of right shift. This can help the model to
estimate the fiducial points even if the segments were not
centered correctly around R point.

• Time warping by stretching/shrinking in the temporal
domain at a rate 0.5 to 1.5. This method is simulating
higher and lower heart rates.

Figure 3 shows sample windows after applying the augmen-
tation methods. At the beginning of each training iteration, one
of the methods was selected randomly. Then the associated
parameter (such as SNR and threshold) with this method was
initialized randomly in the range given above in the list.

The model was trained using Adam optimizer [24] to
minimize a mean squared error loss function of a mini-batch
of size 64. The learning rate was 1e-4, and the dropout rate
was 0.1. The L2 regularization rate was 1e-5.

IV. RESULTS

The heartbeats have high intra-recording similarity for each
specific subject, and high inter-channel similarity [5]. There-
fore, shuffling the windows (i.e., heartbeats) randomly and
splitting them into training and testing sets is not the right
way to evaluate the model performance because of the leaked
similarity from training to test sets that deep learning models
easily memorize. We solved this issue by performing a 10-fold
cross-validation based on subject-wise splits. Each fold had the
windows of 30 subjects, except the last fold, which had only 35
subjects. The results reported in this section are averaged for
all the subjects after training the model 10 times on different
training and testing splits based on the cross-validation. The
windows of 10 subjects from the training splits were used
for validation to select the best model and tune the hyper-

parameters. Finally, we evaluated the trained model on QT
and LUDB datasets on the holdout HEMOTAG dataset.

The metrics used for evaluation were first the mean absolute
error (MAE) between the gold-standard and estimated fiducial
points (fid ∈ {P-wave peak, QRS-complex onset and offset,
and T-wave peak} as shown in Equation 1. The second metric
is the standard deviation (STD) of the mean absolute error
across subjects. The third metric is the percentage of error
(PoE) which is the MAE divided by the beat-to-beat interval
of each subject, as shown in Equation 2.

MAEfid =
1

Nsub

NS∑
s=1

∑Ns
beats

i=1 |tfid[i]− ˆtfid[i]|
Ns

beats

(1)

where Nsub is the total number of subjects (i.e 305), Ns
beats

is the number of beats (i.e., windows) of subject s, and ˆtfid[i]
is the estimated fiducial point.

PoEfid =
1

Nsub

NS∑
s=1

∑Ns
beats

i=1 |tfid[i]− ˆtfid[i]|
Ns

beats × tsbb
× 100% (2)

where tsbb is the median of the beat-to-beat intervals of subject
s.

In addition, we calculated additional metrics to make a
direct comparison with other algorithms in the literature. The
relative error (RelE) was calculated as the average difference
between the gold-standard and estimated fiducial points with-
out taking the absolute value as described in [5]. The precision
( TP
TP+FP ) was also calculated where TP is the number of the

true-positive windows with MAE of 150 ms at most, FP is
the number of false-positive windows with MAE of 150ms
or higher. Using 150ms interval was following related work.
The recall was one since we considered a window for each
heartbeat and the model always estimates the fiducial points
for a given window.

A. Evaluation on QT and LUDB Datasets

The testing results of the proposed CNN model including
MAE, PoE, RelE, and STD for each of them are shown in
Table I. MAE ranged from 7.3 ms for QRS-complex onset
to 16.42 ms for T-wave peak. PoE was below 2% for all
the estimated fiducial points. RelE was very low and ranged
between -1.29 ms to 0.68 m, but its STD was higher and
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Fig. 3. Sample windows after applying each of the augmentation methods used in this work.

ranged between 11.41 ms for QRS-complex onset to 31.71
ms for T-wave peak.

TABLE I
THE TESTING RESULTS AVERAGE OF THE PROPOSED CNN MODEL USING

QT AND LUDB DATASETS INCLUDING THE MEAN ABSOLUTE ERROR
(MAE), THE PERCENTAGE OF ERROR (PoE) AND THE RELATIVE ERROR

(RelE).

P-wave QRS-complex T-wave
Peak Onset Offset Peak

MAE (ms)
± STD

11.19
± 6.28

7.30
± 4.57

9.71
± 5.64

16.42
± 8.08

PoE (%)
± STD

1.22
± 0.71

0.81
± 0.54

1.08
± 0.65

1.75
± 0.90

RelE (ms)
± STD

-1.29
± 8.45

-1.11
± 6.27

0.57
± 7.84

0.68
± 10.70

Subjects with cardiovascular diseases such as arrhythmias
and ST segment abnormalities may have different heart wave-
forms than people with normal sinus rhythms, which might
affect the localization performance of deep models. Therefore,
we averaged the error percentage for the estimated fiducial
points in the different sets found in the QT and LUDB dataset,
as shown in Figure 4. All subsets had PoE lower than or about
3% for all the fiducial points except the subset of sudden-death
patients with about 5% PoE for the T-wave peak. Inspecting

the recordings of sudden-death patients showed that the T
wave did not appear in some of them, and they were corrupted
with noise more than other subsets.

B. Evaluation on HEMOTAG Dataset

The CNN model performance on the HEMOTAG Dataset
that was unseen before and collected using the HEMOTAG is
shown in Table II. The model showed a better performance
in estimating the T-wave peak but slightly lower performance
in estimating the other fiducial points than the performance
on QT and LUDB datasets. However, the PoE was still low,
with a maximum of 2.42% in estimating the P-wave peak.
The reason for the lower performance could be the domain
adaptation problem with CNN networks since the electrodes
of the HEMOTAG device have different placement than the
devices used in QT and LUDB datasets. Also, other noise
distributions and levels are present. The different placement
may affect the morphology of the ECG signal.

Table III shows the testing mean absolute error (MAE)
(in samples) of the proposed CNN model for each subject in
the prospective HEMOTAG dataset beside the notes from the
specialist. The low performance in estimating P-wave peaks
is explained in the specialist’s notes where P waves did not
appear or were noisy and fainted (subject #6, 8, and 10).
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Fig. 4. The percentage of error for the estimated fiducial points in the different sets found in QT and LUDB dataset.

TABLE II
THE TESTING RESULTS OF THE PROPOSED CNN MODEL USING THE

PROSPECTIVE HEMOTAG DATASET INCLUDING THE MEAN ABSOLUTE
ERROR (MAE), THE PERCENTAGE OF ERROR (PoE) AND THE RELATIVE

ERROR (RelE).

P-wave QRS-complex T-wave
Peak Onset Offset Peak

MAE (ms)
± STD

22.86
± 13.78

9.28
± 5.66

16.46
± 10.97

13.66
± 14.00

PoE (%)
± STD

2.42
± 1.50

1.06
± 0.64

1.73
± 1.14

1.44
± 1.43

RelE (ms)
± STD

4.63
± 17.05

2.45
± 7.95

-8.34
± 12.44

2.66
± 16.98

The issue in capturing the P wave is apparent in the ECG
recordings in Figure 5 B that show five heartbeats for the
subjects in the HEMOTAG dataset with the manual and CNN
estimations of fiducial points. Subject 6 had an arrhythmia,
and the P waves were absent, so the specialist and the CNN
model were unsure of the peaks’ locations.

C. Comparison between the Pan-Tompkins model and CNN
model in localizing QRS-complex onset and offset

We calculated the MAE for the estimated onset and offset
of the QRS complex using the proposed CNN and the Pan-
Tompkins models for each of the three datasets, as shown in
Table IV. CNN significantly outperformed the Pan-Tompkins
model in estimating QRS-complex offset. The Pan-Tompkins

TABLE III
THE TESTING MEAN ABSOLUTE ERROR (MAE) (IN MS) OF THE

PROPOSED CNN MODEL FOR EACH SUBJECT IN THE PROSPECTIVE
HEMOTAG DATASET BESIDE THE NOTES FROM THE SPECIALIST.

SAMPLING FREQUENCY IS 250 HZ.

MAE (ms)
± STD
P-wave QRS-complex T-waveSubject #
Peak Onset Offset Peak

Notes

1 11.52
± 10.48

15.16
± 3.72

19.52
± 10.56

10.84
± 9.48 Fainted P waves

2 16
± 10.6

11.16
± 8.16

9.24
± 8.68

18.24
± 13.32 Noisy P waves

3 5.56
± 5.56

14.92
± 11.12

14.28
± 7.44

10.4
± 11.52

4 3.72
± 3.28

7.24
± 2.32

8.56
± 2.52

3.08
± 2.4

5 12.84
± 14.32

8.72
± 5.96

17.44
± 17.16

44.44
± 70 Noisy T waves

6 32
± 24.52

6.48
± 4.96

7.04
± 4.44

6.96
± 5.68

Fainted or
missing P waves

7 28.28
± 8.64

12.68
± 7.68

9.88
± 10.68

11.72
± 7.44

8 53.76
± 35.32

4
± 3.76

11.04
± 17

14.56
± 10.12

Fainted or
missing P waves

9 46.16
± 11.96

8.48
± 4.2

15.52
± 3.12

12
± 8.88 Noisy ECG

10 28.12
± 17.4

5.16
± 4.12

10.52
± 10.52

10.52
± 9.08

Fainted or
missing P waves

11 13.84
± 9.48

8
± 6.24

39.72
± 23.96

7.56
± 6.08
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Fig. 5. ECG recording samples of 5 heartbeats for subjects from the HEMOTAG dataset. Clear P waves are shown in part A, and noisy or fainted P waves
are shown in part B. The manual and CNN estimations of fiducial points are localized, and a small size marker is used for CNN estimations.

model had a high MAE and STD (23.56±17.12ms) in esti-
mating the offset. Also, CNN had lower MAE in estimating
the QRS-complex onset in all datasets. Also, the STD in
estimating the onset by the CNN is lower than that of the
Pan-Tompkins model because it estimated the onset of two
subjects with about 30ms MAE. In general, the MAE in the
estimated onset using the Pan-Tompkins model is increasing
for noisy ECG and abnormal QRS wave-forms for unhealthy
subjects, whereas the CNN is performing consistently better.

TABLE IV
TESTING ERROR OF THE PAN-TOMPKINS MODEL AND CNN MODEL IN

ESTIMATING THE QRS-COMPLEX ONSET AND OFFSET.

QRS-complex onset QRS-complex offsetDataset Evaluated
metric Pan-Tompkins CNN Pan-Tompkins CNN

QT MAE (ms)
± STD

13.98
± 16.58

9.76
± 5.66

15.35
± 8.11

13.14
± 6.91

LUDB MAE (ms)
± STD

9.36
± 6.47

5.94
± 3.98

13.45
± 9.06

7.83
± 4.94

HEMOTAG MAE (ms)
± STD

10.54
± 8.56

9.28
± 5.66

23.56
± 17.12

15.41
± 11.24

V. DISCUSSIONS

We are presenting a deep CNN with seven convolutional
layers, utilizing a Pan-Tompkins R-point detection method,
and performing a comprehensive analysis. Training a deeper
CNN, when compared with existing works,was possible due
to expanding the training set by including the LUDB dataset

and applying four regularization techniques, including data
augmentation methods that improved the performance of this
work significantly.

A direct comparison with the proposed methods in the
literature is summarized in Table V. Jimenez-Perez et al. [5]
developed a fully-convolutional neural network (names U-Net)
to delineate the onset and offset of P wave, T wave, and QRS
complex. Kalyakulina et al. [6], [7] developed a model based
on Wavelet analysis to localize the onset, offset and peaks of P
wave, T wave, and QRS complex, except the onset of T wave.
The proposed CNN model yielded the highest precision in both
QT and LUDB datasets compared to the other methods. Also,
the proposed CNN model yielded the lowest relative error for
estimating three fiducial points and a comparable error for P
peak estimation. Our algorithm’s estimation error of T-wave
fiducial points was significantly lower than other related work.

The largest error was reported in estimating T-wave peak,
which was understandable given the complexity associated
with T waves. Other researchers who reported the maximal er-
ror in estimating T-wave fiducial points [6], [25] have reported
T waves complexity. T waves, for some subjects, are valleys
instead of a hill shape. On the QT dataset, intra-observer
bias in estimating T-wave onset was -51.96±105.88ms, and
inter-observer bias for the same manual estimation was -
9.52±44.85ms [5]. However, the CNN model achieved a
significantly lower error (5.82±15.78).
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TABLE V
THE PERFORMANCE MEASURES OF THE PROPOSED ALGORITHM IN

COMPARISON WITH RELATED WORK IN LITERATURE. THE BEST METRICS
FOR EACH OF THE DATASETS IS IN BOLD. N/A MEANS NOT REPORTED.

P-wave QRS-complex T-waveMethod Metric Peak Onset Offset Peak
Precision 99.87 100.00 100.00 98.62Proposed CNN model

QT dataset RelE (ms)
± STD

3.03
± 9.35

-0.42
± 7.55

0.20
± 8.73

3.94
± 11.73

Precision 100.00 100.00 100.00 100.00Proposed CNN model
LUDB dataset RelE (ms)

± STD
-1.98
± 8.48

-0.14
± 6.01

-0.08
± 7.99

0.51
± 10.8

Precision 97.89 98.24 98.24 98.24
Recall 97.50 98.42 98.42 98.24Wavelet analysis by

Kalyakulina et al. [6], [7]
QT dataset RelE (ms)

± STD
4.3

± 10.0
-5.1
± 6.6

4.7
± 9.5

7.2
± 13.0

Precision 96.41 99.87 99.87 98.84
Recall 98.46 99.61 99.61 99.03Wavelet analysis by

Kalyakulina et al. [6], [7]
LUDB dataset RelE (ms)

± STD
-0.3
± 6.2

-8.1
± 7.7

3.8
± 8.8

4.0
± 7.4

Precision 90.12 99.14 98.25
Recall 98.73 99.94 99.88U-Net by

Jimenez-Perez et al. [5]
QT dataset (single-lead) RelE (ms)

± STD N/A -0.07
± 8.37

3.64
± 12.55 N/A

Recall 99.63 N/A N/A 98.06
CNN by
Abrishami et al. [8]
QT dataset

RelE (ms)
± STD

17.03
± 17.69 N/A N/A

16.05
± 18.02

A. Limitations and Next Steps

The proposed CNN network estimates the P-wave peak even
if it was not clear in the ECG signals. However, this model
assumes that all fiducial points are present, which is not the
case with various cardiovascular diseases. In case of missing
P or T waves, this model may fail and not give a prediction
probability. Therefore, our first future work is to develop a
method to estimate a confidence value for CNN localization.
One possible approach is visualizing the heat maps of the
CNN. One advantage of a CNN network is that it can be
easily upgraded to estimate new labels by adding new output
nodes. Our second future work is modifying the output layer
to have nine nodes to estimate nine fiducial points. The points
were onset, peak, and offset of the P and T waves, and QRS
complex.

VI. CONCLUSIONS
We developed an algorithm to localize four ECG fiducial

points: P peak, onset and offest of QRS wave, and T peak.
The algorithm utilized a rule-based model to detect heartbeats
in ECG signals that were standardized, segmented, and fed to
a CNN model. The algorithm achieved high performance on
both the standard ECG datasets and the HEMOTAG dataset
with PoE lower than 2.42% in estimating the fiducial points.
The testing performance showed the model’s generalizability
to unseen ECG signals with different CVD.
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