
IEEE TRANSACTIONS ON SIGNAL PROCESSING 1

Functional Bayesian Filter
Kan Li, Member, IEEE and José C. Prı́ncipe, Life Fellow, IEEE

Abstract—We present a general nonlinear Bayesian filter for
high-dimensional state estimation using the theory of reproducing
kernel Hilbert space (RKHS). By applying the kernel method and
the representer theorem to perform linear quadratic estimation
in a functional space, we derive a Bayesian recursive state
estimator for a general nonlinear dynamical system in the original
input space. Unlike existing nonlinear extensions of the Kalman
filter where the system dynamics are assumed known, the state-
space representation for the Functional Bayesian Filter (FBF) is
completely learned online from measurement data in the form
of an infinite impulse response (IIR) filter or recurrent network
in the RKHS, with universal approximation property. Using a
positive definite kernel function satisfying Mercer’s conditions
to compute and evolve information quantities, the FBF exploits
both the statistical and time-domain information about the signal,
extracts higher-order moments, and preserves the properties of
covariances without the ill effects due to conventional arithmetic
operations. We apply this novel kernel adaptive filtering (KAF)
to recurrent network training, chaotic time-series estimation and
cooperative filtering using Gaussian and non-Gaussian noises,
and inverse kinematics modeling. Simulation results show FBF
outperforms existing Kalman-based algorithms.

I. INTRODUCTION

The famed Kalman filter [1] is the optimal estimator in
the minimum mean-square error (MMSE) sense when the
model is linear and all latent and observed variables are
jointly Gaussian. Kalman filters, predictors, and smoothers
are enormously successful with a rich array of applications.
However, its optimality depends on the linear structure of
the underlying system, accurate knowledge of the system
parameters, and the exact statistics of the noise terms.

Real-world applications in science and engineering involve
nonlinear transformations. The notions of optimality and ana-
lytical or general close-form solution become intractable when
dealing with such systems [2]. To overcome this limitation,
several suboptimal solutions to the Bayesian filter or non-
linear extensions of the Kalman filter were developed that
linearize or perform moment matching to approximate the
nonlinear update, such as the extended Kalman filter (EKF)
[3], [4], unscented Kalman filter (UKF) [5], [6], and the
cubature Kalman filter (CKF) [7]. The EKF approximates a
nonlinear system using first-order linearization. The UKF uses
unscented transform for approximation. The CKF uses a third-
degree spherical-radial cubature rule to compute the second-
order statistics of a nonlinearly transformed Gaussian random
variable [7]. Variants of particle filtering using sequential
Monte Carlo (MC) approach have also been used for recursive
Bayesian filtering, where the posterior density function is

This work was supported, in part, by DARPA Contracts N66001-10-C-2008,
N66001-15-1-4054, FA9453-18-1-0039, and ARO grant W911NF-21-1-0254.

The authors are with the Computational NeuroEngineering Laboratory,
University of Florida, Gainesville, FL 32611 USA (e-mail: likan@ufl.edu;
principe@cnel.ufl.edu).

represented by a set of weighted random samples [8], [9].
Novel modeling and inference frameworks for dynamical
systems is an active, ongoing research area [10]–[12].

Recently, several formulations were proposed, using the the-
ory of RKHS, including the kernel Kalman filter (KKF) [13],
the dynamical system model with a conditional embedding
(DSMCE) operator [14], and the kernel Bayes’ rule (KBR)
[15]. The KKF is implemented in a high dimensional subspace
obtained by the Kernel principal component analysis (KPCA)
algorithm [16]. The DSMCE and KBR algorithms are both
developed based on the embedding of conditional distributions
in RKHS. A closely related concept, Gaussian process (GP)
[17] regression models have also been used to learn prediction
and observation models for dynamical systems [18], [19]. All
of these generative approaches treat the time series or their
feature-space mappings as the hidden states and describe the
dynamics by the assumed state-space model (SSM) or the
given hidden-state training data. This brings us to the second
major shortcoming of the Kalman filter and its aforementioned
nonlinear extensions.

Conventional Kalman-based methods require accurate
knowledge of the system dynamics, while most real-world
systems have unknown transformations. Therefore, accurate
estimation and prediction cannot be obtained by these algo-
rithms. For linear systems, various methods have been pro-
posed to make state estimation robust against modeling errors
such as parametric uncertainties, e.g., using minimization of
an ϵ-contaminated criterion [20], and stochastic measurement
droppings by applying a sensitivity-penalization based recur-
sive procedure with intermittent observations [21]. For dual
estimation (estimating the state of a dynamic system and the
model giving rise to the dynamics), a separate construct such
as a neural network can be used as the functional form of
the unknown model. This typically requires separate state-
space representations for the signal and the weights, i.e., two
dynamical systems, one for the evolution of the states, and
the other, the evolution of the network parameters. The kernel
Kalman filter based on the conditional embedding operator
(KKF-CEO) [22] was developed to combat this issue. It
constructs a state space model in an RKHS using the estimated
conditional embedding operator and implements the Kalman
filtering in this space. However, similar to the extended KRLS
(Ex-KRLS) algorithm [23], the KKF-CEO is formulated using
a simple additive noise model and does not utilize a fully
developed state-space representation.

More recently, the kernel adaptive autoregressive-moving-
average (ARMA) or KAARMA algorithm [24] was introduced
to bridge the theories of adaptive signal processing and re-
current neural networks (RNNs), extending the current theory
of feedforward kernel adaptive filtering (KAF) to include
feedback. It is a true infinite impulse response (IIR) system

IEEE TRANSACTIONS ON SIGNAL PROCESSING 2

in the RKHS, formulated with a full SSM. Unlike its finite-
impulse response (FIR) counterpart, the memory depth of an
IIR filter is independent of the filter order and the number of
adaptive parameters, thus ideally suited for modeling dynamics
characterized by a deep memory structure yet with a small
number of free parameters, which ultimately yields a simpler,
parsimonious network. KAARMA learns unknown general
nonlinear continuous-time state-transition and measurement
equations, using only an input sequence and the observed
outputs. KAARMA is trained using stochastic gradient-descent
and can operate on incomplete or deferred outputs for se-
quence learning. We have successfully applied KAARMA
to model flight dynamics of insects [25] and speech using
biologically-inspired spike trains [26].

In this paper, we derive a Kalman-like filter in the RKHS
on the full state-space representation used in KAARMA. This
is similar to training RNNs using the extended Kalman filter
[27], except that the network is implemented in a functional
space where classical linear methods are used (computed in the
input space using the representer theorem and the kernel trick),
and the universal approximation property of kernel method
provides a general nonlinear solution in the input space. To
distinguish our work from previous attempts, we name our
novel algorithm the Functional Bayesian Filter (FBF). FBF is
inherently an ARMA model, using joint estimation (state and
model parameters are concatenated within a combined state
vector, resulting in a single dynamical model to estimate both
quantities simultaneously). There is no a priori requirement on
system knowledge, as it can be trained from scratch using only
observations, e.g., time series analysis, where time-delayed
observations are used as inputs. To take advantage of FBF, the
nonlinear SSM has to be expressed in terms of a linear filter
in the RKHS, and the simplest conversion is through training.
If accurate knowledge of the system is available (i.e., clean
states), this will facilitate convergence during training. We will
show that the FBF generalizes the KAARMA algorithm.

Lastly, the Kalman filter is MMSE-optimal only for a linear
system and under the assumption that the model uncertainty
(innovation) is fully described by first and second order
statistics. This assumption results in degraded performances
when data contains outliers or nonzero higher-order cumu-
lants. The FBF, on the other hand, makes no assumption on
the state transition model or the noise profile, by learning
directly from measurement data. The fact that reproducing
kernels are covariance functions explains their early role in
inference problems [28], [29]. Because of the nonlinearity
of the Gaussian kernel, all even moments of the random
variable contribute to the estimation of a similarity measure
[30]. The FBF propagates and updates the full statistics of
the measurement distribution in the RKHS, not just the mean
and covariance, which results in enhanced estimation in non-
Gaussian noise environments. From an information theoretic
learning (ITL) [30] perspective, the FBF natively computes
information quantities such as correntropy and information
potential (IP) to evolve the probability density function (pdf)
of the data, using adaptive Parzen estimation or kernel density
estimation (KDE) [31]. The versatility of the proposed FBF,
under the powerful unifying framework of kernel methods

[32], will be useful for a diverse set of applications in
automatic control, machine learning, and signal processing.
The major attributes of different well-known Kalman-based
Bayesian filters are summarized in Table I.
TABLE I: Comparison of well-known Kalman-based Bayesian
filters and FBF.

Filter

Property Nonlinear
Dynamics

Unknown
Dynamics

Higher-Order
Statistics

Kalman

EKF limited

UKF ✓

CKF ✓

FBF ✓ ✓ ✓

The remainder is organized as follows. In Section II,
Bayesian filtering is reviewed. We introduce kernel adaptive
filtering in Section III and present the proposed Functional
Bayesian Filter algorithm along with its relationship to ITL.
To improved the flow and readability, we leave the detailed
derivation in the Appendix. Section IV presents the experimen-
tal results, comparing our novel method with several existing
algorithms. Finally, Section V concludes this paper.

II. BAYESIAN FILTERING

For a nonlinear dynamic system, we are interested in
estimating the hidden states recursively via the sequence of
noisy observations or measurements dependent on the state.
Bayesian filtering provides a unifying framework for solving
this problem. Kalman filter is a special case with an optimal
solution, assuming the system is linear and that the second-
order statistics of the dynamic and observation noises are
known.

Let a dynamical system (Fig. 1) be defined in terms of a
general continuous nonlinear state-transition and observation
functions, f(·, ·) and h(·), respectively,

xi = f(xi−1,ui) +wi−1 (1)
yi = h(xi) + vi (2)

where

f(xi−1,ui)
∆
=
[
f (1)(xi−1,ui), · · · , f (nx)(xi−1,ui)

]T
(3)

h(xi)
∆
=
[
h(1)(xi), · · · , h(ny)(xi)

]T
(4)

with input ui ∈ Rnu , state xi ∈ Rnx , output yi ∈ Rny , additive
dynamic noise wi and observation noise v are statistically
independent processes of zero mean and known covariance
matrices, and the parenthesized superscript (k) indicates the
k-th column of a matrix or the k-th component of a vector.
Note that the input, state, and output vectors have independent
degrees of freedom or dimensionality.

Let x̂i|i−1 be the a priori state estimate at step i, given
knowledge of the process prior to step i, and x̂i|i be the a
posteriori state estimate at step i, given new measurement yi,
we can define the a priori and a posteriori estimate errors as

ei|i−1 = xi − x̂i|i−1 (5)
ei|i = xi − x̂i|i. (6)

IEEE TRANSACTIONS ON SIGNAL PROCESSING 3

Fig. 1: General state-space model for dynamical system.

The goal is to minimize the expectations of the squared state
errors, which, for unbiased estimators, is equivalent to the a
posteriori error covariance

Pi|i = E[ei|ie
⊺
i|i] (7)

where E[·] denotes the expectation.
This recursive process consists of two distinct phases. The

time update computes the predictive density

p(xi|Di−1,ui) =

∫
Rnx

p(xi, xi−1|Di−1,ui) dxi−1

=

∫
Rnx

p(xi|xi−1,ui)p(xi−1|Di−1) dxi−1 (8)

where Di−1 = {uj , yj}
(i−1)
j=1 denotes the history or sequence

of input-observation pairs up to time index (i − 1). The
measurement update involves computing the posterior density
of the current state, which is proportional to the product of the
measurement likelihood and the predicted state (Bayes’ rule)
as

p(xi|Di) = p(xi|Di−1,ui, yi)

=
p(xi|Di−1,ui)p(yi|xi)

p(yi|Di−1,ui)
(9)

where the denominator or normalizing constant is

p(yi|Di−1,ui) =

∫
Rnx

p(yi|xi)p(xi|Di−1,ui) dxi. (10)

Under the Gaussian approximation, the predictive density
p(xi|Di−1,ui), the filter likelihood density p(yi|xi), and the
resulting posterior density p(xi|Di) are all assumed to be
Gaussian, effectively reducing the recursive Bayesian esti-
mation to operations only on the means and covariances of
the conditional densities involved. The time update computes
the conditional mean x̂i|i−1 and the covariance Pi|i−1 of the
Gaussian predictive density as

x̂i|i−1 = E[xi|Di−1,ui] (11)
Pi|i−1 = E[(xi − x̂i|i−1)(xi − x̂i|i−1)

⊺|y1:i−1]. (12)

The errors in predicted measurements are zero-mean white
sequences with filter likelihood density approximated by the
Gaussian as

p(yi|Di−1) = N (yi; ŷi|i−1,Pyy,i|i−1) (13)

where ŷi|i−1 is the predicted measurement with the associated
covariance Pyy,i|i−1. The conditional Gaussian density of the
joint state and measurement is

p

([
xi

yi

]
|Di−1

)
= N

([
x̂i|i−1

ŷi|i−1

]
,

[
Pi|i−1 Pxy,i|i−1

P⊺
xy,i|i−1 Pyy,i|i−1

])
(14)

where Pxy,i|i−1 is the cross-covariance.
Upon receiving a new measurement yi, the Bayesian filter

computes the posterior density p(xi|Di) yielding

p(xi|Di) = N (xi; x̂i|i,Pi|i) (15)

where

x̂i|i = x̂i|i−1 + Gi(yi − ŷi|i−1) (16)

Pi|i = Pi|i−1 −GiPyy,i|i−1G⊺
i (17)

Gi = Pxy,i|i−1P−1
yy,i|i−1 (18)

with Gi being the gain or fusion factor that minimizes the a
posteriori error covariance Pi|i. While the recursive estimation
is linear, no assumption has been made on the linearity of
the model. If the state-transition and observation functions
are linear, under the Gaussian assumption, Bayesian filtering
reduces to the Kalman filter. The Kalman filter is optimal in
the sense that it minimizes the estimated error covariance. The
Gaussian pdf is widely used due to its convenient mathematical
properties: closed under linear transformation and condition-
ing, and uncorrelated jointly Gaussian random variables are
independent. Although rarely do all the conditions necessary
for optimality exist, the Kalman filter performs well in prac-
tice, due to its simplicity, robustness, and versatility, as the
Gaussian approximates many natural random processes by the
central limit theorem [7].

III. FUNCTIONAL BAYESIAN FILTERING (FBF)

In this section, we present the main contribution of the
paper. First, we briefly introduce the basic concept of linear
filtering in the RKHS or kernel adaptive filtering [23]. For a set
of N data points D = {xi, yi}Ni=1, where xi ∈ Rnx is the input
and yi ∈ R is the corresponding output signal or observation,
we would like to infer the underlying function y = f(x) and
predict its value or the value of a new observation y′, for a
new input vector x′.

From a parametric approach or weight-space view to regres-
sion, the estimated latent function f̂(x) is expressed in terms of
a set of parameters or weight vector W ∈ Rnx . In the standard
linear form

f̂(x) = W⊺x. (19)

To overcome the limited expressiveness of this model, we can
project the nx-dimensional input vector x ∈ U ⊆ Rnx (where
U is a compact input domain in Rnx) into a potentially infinite-
dimensional feature space F. Define a U → F mapping ϕ(·),
the linear model (19) becomes

f̂(x) = ⟨Ω, ϕ(x)⟩F = Ω⊺ϕ(x) (20)

where ⟨·, ·⟩F : F × F → R is the inner product, and Ω is a
potentially infinite dimensional weight vector in the feature
space, denoted by Greek letter.

Using the representer theorem [33] and the kernel trick, (20)
can be expressed as a weighted sum of basis functions

f̂(x) =
N∑
i=1

αiK(xi,x) (21)

where αn are the coefficients, K(x,x′) is a Mercer kernel
corresponding to the inner product ⟨ϕ(x), ϕ(x′)⟩F, and N is
the number of basis functions or training samples. Note that
F is equivalent to the RKHS H induced by the kernel if we
identify ϕ(x) = K(x, ·), i.e., F = H [33]. The most commonly

IEEE TRANSACTIONS ON SIGNAL PROCESSING 4

used kernel for KAF is the Gaussian radial basis function
(RBF)

Ka(x,x
′) = exp

(
−a∥x− x′∥2

)
(22)

where the kernel parameter is equivalent to a = 1/(2σ2) in
(74). Without loss of generality, we will only consider the
Gaussian RBF kernel for the rest of this paper. Mercer kernels
approximate uniformly an arbitrary continuous target function
to any degree of accuracy over any compact subset of the input
space, i.e., the universal approximation property. The theory
of RKHS allows us to represent a general nonlinear function
as a set of linear weights Ω in the feature space.

III.A. State Space Representation in the RKHS

We can construct a nonlinear state-space model or dynam-
ical system with linear weights in the RKHS. For simplicity,
we rewrite the dynamical system equations (1-2) in terms of
a new hidden state vector

si
∆
=

[
xi
yi

]
=

[
f(xi−1,ui)

h ◦ f(xi−1,ui)

]
(23)

yi = s(ns−ny+1:ns)
i =

[
0 Iny

]
︸ ︷︷ ︸

I

[
xi
yi

]
(24)

where Iny is an ny × ny identity matrix, 0 is an ny × nx
zero matrix, and ◦ is the function composition operator. This
augmented state vector si ∈ Rns is formed by concatenating
the output yi with the original state vector xi, i.e., augmented
state dimension ns = nx + ny . With this rewriting, the
measurement equation simplifies to a fixed selector matrix
I

∆
=
[
0 Iny

]
. Note, despite the parsimonious structure of

(24), there is no restriction on the measurement equation, as
h ◦ f in (23) is its own set of general nonlinear equations, i.e.,
this is functionally equivalent to the generative model shown
in Fig. 1.

Next, we define an equivalent transition function
g(si−1,ui) = f(xi−1,ui) taking as argument the new
state variable s. Using this notation, the dynamic system can
be expressed in terms of the augmented state vector and input

xi = g(si−1,ui) (25)
yi = h(xi) = h ◦ g(si−1,ui). (26)

To learn the general continuous nonlinear transition and
observation functions, g(·, ·) and h ◦ g(·, ·), respectively, we
apply the theory of RKHS. First, we map the augmented state
vector si and the input vector ui into two separate RKHSs as
φ(si) ∈ Hs and ϕ(ui) ∈ Hu, respectively. By the representer
theorem, the state-space model defined by (25-26) can be
expressed as the following set of weights (functions in the
input space) in the joint RKHS Hsu

∆
= Hs ⊗Hu:

Ω
∆
= ΩHsu

∆
=

[
g(·, ·)

h ◦ g(·, ·)

]
(27)

where ⊗ is the tensor-product operator. This formulation
preserves the functionalities of the separate state-transition
and observation equations while consolidating them into a
single set of weights in the RKHS (i.e., a single, parsimonious

network), which greatly facilitates the construction of an
empirical model and the adaptation of parameters.

We define the new features in the tensor-product RKHS as

ψ(si−1,ui)
∆
= φ(si−1)⊗ ϕ(ui) ∈ Hsu. (28)

It follows that the tensor-product kernel is defined by

⟨ψ(s,u), ψ(s′,u′)⟩Hsu

∆
= Kasu

(s,u, s′,u′)

= (Kas
⊗Kau

)(s,u, s′,u′)

= Kas
(s, s′) · Kau

(u,u′). (29)

This construction has several advantages over the simple
concatenation of the input u and the state s. First, the tensor
product of two positive definite kernels is also a positive
definite kernel [32]. Second, since the adaptive filtering is
performed in an RKHS using features, there is no constraint
on the original input signals or the number of signals, as long
as we use the appropriate reproducing kernel for each signal.
Last but not least, this formulation imposes no restriction on
the relationship between the signals in the original input space.
This is important for signals with different representations and
spatio-temporal scales, such as biological systems [24].

Finally, the kernel state-space model becomes

si = ΩTψ(si−1,ui) (30)
yi = Isi. (31)

Fig. 2 shows a simple kernel ARMA model corresponding to
the SSM in (30 and 31). In general, the states si are assumed
hidden, and the desired output does not need to be available
at every time step, e.g., a deferred desired output value for
yi may only be observed at the final indexed step i = f
or df . It has been proven that fully connected RNNs and
nonlinear autoregressive exogenous (NARX) networks with
a finite number of parameters are as powerful as Turing
machines, i.e., universal computation devices [34], [35].

Fig. 2: ARMA model in the RKHS.

III.B. Bayesian filtering in the RKHS

We can learn Ω, the dynamical system weights in the
RKHS, using stochastic gradient descent [24]. Since the theory
of RKHS allows us to use a linear form of the state-space
representation to obtain nonlinear solution, we can also use
Bayesian filtering to train Ω and model noise statistics.

For a discrete-time linearized dynamical system described
by the following state transition and measurement equations:

si = Fi−1si−1 +wi−1 (32)
yi = Hisi + vi. (33)

IEEE TRANSACTIONS ON SIGNAL PROCESSING 5

where the super-augmented state vector is defined as

si
∆
=

[
si
Ωi

]
(34)

with si = [xi, yi]⊺, same as in (23), and we treat the weight
matrix Ωi in the RKHS at time i as an nΩ-dimensional
(potentially infinite) vector rather than a matrix, via an orderly
arrangement of the weight parameters, the state transition
matrix can be expressed in block form as

Fi =

[
F1(i) F2(i)

0 InΩ

]
(35)

where F1(i) is an ns×ns matrix, F2(i) is an ns×nΩ matrix,
and InΩ

is an nΩ×nΩ identity matrix. State transition equation
(32) becomes[

si
Ωi

]
=

[
F1(i) F2(i)

0 InΩ

][
si−1

Ωi

]
+wi−1. (36)

Since the network output yi is a subvector of the hidden state
si, the measurement function Hi in (33) becomes a simple
projection onto the last ny components of si

yi = H

[
si
Ωi

]
+ vi (37)

where

H ∆
=
[
I 0

]
(38)

with I ∆
=
[
0 Iny

]
∈ Rny×ns being a fixed selector matrix.

From the state-space model in (36), the state transition ma-
trix block in (35) consists of the following Jacobian matrices
(similar to EKF linearization)

F1(i) =
∂si
∂si−1

(39)

and

F2(i) =
∂si
∂Ωi

. (40)

Using the representer theorem, RKHS weights Ωi at time i
(where i ≥ 1) can be written as a linear combination of prior
features

Ωi = ΨiAi (41)

where Ψi
∆
= [ψ(s−1,u0), · · · , ψ(si−2,ui−1)] ∈ RnΩ×i is

a collection of the i past tensor-product features (the first
feature Ψ1 = [ψ(s−1,u0)] is typically seeded randomly), and
Ai

∆
= [αi,1, · · · ,αi,ns

] ∈ Ri×ns is the set of coefficients
with column vector αi,k ∈ Ri corresponding to the k-th
state dimension (1 ≤ k ≤ ns). Thus, each of the k-th state
component of the filter weights at time step i becomes

Ω
(k)
i = ΨiA

(k)
i = Ψiαi,k (42)

which corresponds to a general nonlinear function in the input
space.

Since the hidden states are propagated using linear operator
in the RKHS, i.e., si = Ω⊺

i ψ(si−1,ui), using the representer
theorem (41), we can compute F1(i) in the input space as

∂si
∂si−1

=
∂Ω⊺

i ψ(si−1,ui)

∂si−1

= AT
i

∂Ψ⊺
i ψ(si−1,ui)

∂si−1

= 2asA⊺
i KiD⊺

i︸ ︷︷ ︸
Λi

(43)

where the partial derivative is evaluated using Gaussian RBF
tensor-product kernel, and

Ki
∆
= diag(Ψ⊺

i ψ(si−1,ui)) (44)

is an i × i diagonal matrix with eigenvalues K(j,j)
i =

Kas
(sj−2, si−1) · Kau

(uj−1,ui), where 1 ≤ j ≤ i, and Di
∆
=

[(s−1 − si−1), · · · , (si−2 − si−1)] ∈ Rns×i is the difference
matrix between state centers of the filter and the current input
state variable si−1, as a result of applying the chain rule to
the state-variable Gaussian RBF kernel. We collect the terms
into an ns × ns matrix

Λi
∆
=

∂si
∂si−1

= 2asA⊺
i KiD⊺

i (45)

which we call the state-transition gradient, where each entry
(1 ≤ l,m ≤ ns) can be expressed as

Λ
(l,m)
i = 2as

i∑
j=1

α
(j)
i,l

(
s(m)
j−2 − s(m)

i−1

)
︸ ︷︷ ︸

a
(j,m)
i,l

K(j,j)
i

= 2as

i∑
j=1

a
(j,m)
i,l Kas(sj−2, si−1) · Kau(uj−1, ui) (46)

which has an information theoretic interpretation as a weighted
Parzen estimate of the joint input data (si,ui) pdf.

The second block is computed as

F2(i) = 1ns
ψ(si−1,ui)

⊺ (47)

where 1ns ∈ Rns×1 is a vector of all ones. The estimated
state covariance matrix is given by

Pi|i−1 = FiPi−1|i−1F⊺
i + Qi−1 (48)

where

Qi = E [wiw
⊺
i] (49)

is the process noise covariance matrix. In general, Q will con-
tain non-zero off-diagonal entries (correlated state variables),
however, for simplicity, we will assume diagonal matrices for
the noise covariance matrices (unless provided) and, similarly,
initialize an unknown state covariance P as a diagonal matrix
for simplicity.

The block structure of the state transition matrix F yields
the following estimated state covariance matrix decomposition

P =

[
P1 P2

P3 P4

]
(50)

where P ∈ R(ns+nΩ)×(ns+nΩ), P1 ∈ Rns×ns , and P4 ∈
RnΩ×nΩ are symmetric, with P2 ∈ Rns×nΩ = P⊺

3 . Substi-
tuting (50) and (35) into (48) yields[

P1(i|i−1) P2(i|i−1)
P3(i|i−1) P4(i|i−1)

]
=

[
F1(i) F2(i)

0 InΩ

][
P1(i−1|i−1) P2(i−1|i−1)
P3(i−1|i−1) P4(i−1|i−1)

][
F⊺
1(i) 0

F⊺
2(i) InΩ

]
+

[
σ2
sIns

0
0 σ2

ΩInΩ

]
. (51)

IEEE TRANSACTIONS ON SIGNAL PROCESSING 6

Using the superscripts − and + as shorthands for the a priori
estimate (i|i−1) and a posteriori estimates (i−1|i−1) or (i|i),
where appropriate, we obtain the following update rules:

P−
1 =

[
F1P+

1 + F2(P+
2)

⊺
]

F⊺
1 +

[
F1P+

2 + F2P+
4

]︸ ︷︷ ︸
P−
2

F⊺
2 + σ2

sIns
(52)

P−
2 = F1P+

2 + F2P+
4 (53)

P−
3 = P−⊺

2 (54)

P−
4 = P+

4 + σ2
ΩInΩ

. (55)

The Kalman gain K, using the innovation covariance, is

Si = HP−H⊺ + R = HP−H⊺ + σ2
yIny

(56)

where R and σy are the measurement covariance matrix and
output standard deviation, respectively, yielding

Ki = P−H⊺
i S

−1
i

=

[
P−
1 P−

2

P−
3 P−

4

][
I⊺

0

]([
I 0

] [P−
1 P−

2

P−
3 P−

4

][
I⊺

0

]
+ σ2

yIny

)−1

=

[
P−
1 I

⊺

P−
3 I

⊺

] (
IP−

1 I
⊺ + σ2

yIny

)−1

=

[
P−
1 I

⊺(
P−
2

)⊺
I⊺

] (
IP−

1 I
⊺ + σ2

yIny

)−1

∆
=

[
L1

L2

] (
Mi + σ2

yIny

)−1

∆
=

[
L1

L2

]
Ni (57)

where, for clarity, we defined the following matrices

L1
∆
= P−

1 I
⊺ (58)

L2
∆
= (P−

2)
⊺I⊺ (59)

M ∆
= IL1 (60)

N ∆
= (M + σ2

yIny
)−1 (61)

with L1 ∈ Rns×ny (last ny columns of P−
1), L2 ∈ RnΩ×ny

(last ny rows of P−
2 , transposed), and Mi ∈ Rny×ny (the

ny × ny lower-right corner of P−
1) being submatrices of

the decomposed state-covariance matrix P, since the linear
mappings H and I are defined in (38) as simple projections
onto the last ny coordinates of state si, and N is the inverse
of the innovation covariance matrix.

Clearly, the Kalman gain matrix consists of two parts

Ki =

[
K1

K2

]
=

[
L1Ni

L2Ni

]
(62)

where K1 ∈ Rns×ny describes the changes in network activity
(states si), and K2 ∈ RnΩ×ny corresponds to weight Ωi

changes in response to errors.
Updating the a posteriori state estimate gives

s
+ = s

− +Kiei[
s
Ω

]+
=

[
s
Ω

]−
+

[
K1

K2

]
ei. (63)

Updating the a posteriori covariance estimate gives

P+ = (I−KH)P−[
P+
1 P+

2

P+
3 P+

4

]
=

(
I−

[
K1

K2

] [
I 0

])[P−
1 P−

2

P−
3 P−

4

]

=

[
P−
1 P−

2

P−
3 P−

4

]
−

[
K1

K2

] [
IP−

1 IP−
2

]
=

[
P−
1 P−

2

P−
3 P−

4

]
−

[
K1L⊺

1 K1L⊺
2

K2L⊺
1 K2L⊺

2

]
. (64)

Specifically, measurement updates are given by

s+ = s− +K1e (65)
Ω+ = Ω− +K2e (66)

P+
1 = P−

1 −K1L⊺
1 (67)

P+
2 = P−

2 −K1L⊺
2 (68)

P+
4 = P−

4 −K2L⊺
2 (69)

The covariance blocks are initialized as follows

P1(0) = σ2
sIns

(70)

P4(0) = σ2
ΩInΩ

(71)
P2(0) = 0 (72)

where diagonal matrices are used for simplicity, and the initial
state is assumed to be independent of the filter weights.
The functional Bayesian filtering algorithm is summarized in
Algorithm 1. Detailed derivation is presented in the Appendix.

Functional Bayesian filtering requires the state-space model
to be expressed as a linear model in the RKHS (using
the representer theorem, as a finite linear combination of
kernel products evaluated on the training data). This can be
learned online directly from observations, from either known
or unknown system dynamics. Once the generative model, in
terms of the kernel filter weights Ω, is obtained or fixed (after
training), Algorithm 1 reduces to just the state update, with
state si = si in (34), state transition equation F = F1 in (32),
and covariance P = P1 in (50).

III.C. Complexity

For conventional online kernel adaptive filters, the number
of basis functions grows linearly with each new sample. The
FBF memory and computational complexities for each recur-
sive update are O(N) and O(N2). Unlike gradient descent
learning in KAARMA [24], only a single state vector is
produced per update, in the current trajectory. Nonetheless,
quadratic complexity can be quite prohibitive, especially for
continuous tracking. We can reduce the resource requirements
by limiting or sparsifying N the number of bases used. Any
online kernel method lends itself naturally to sparsification
techniques as data samples are evaluated on an individual
basis. We have developed several techniques to curb the
growth of similar networks, including novelty and surprise-
based criteria or a combination of both [24], [36]. This is an
active research area and beyond the scope of this paper.

IEEE TRANSACTIONS ON SIGNAL PROCESSING 7

Algorithm 1 Functional Bayesian Filter

Initialization:
nu: input dimension
ny: output dimension
ns: state dimension
au: input kernel parameter
as: state kernel parameter
σ2
s : state variance
σ2
Ω: weight variance
σ2
y: output variance

P1(0) = σ2
sIns

P4(0) = σ2
ΩInΩ

P2(0) = 0
Randomly initialize input u0 ∈ Rnu

Randomly initialize states s−1 and s0 ∈ Rns

Randomly initialize coefficient matrix A ∈ R1×ns

Ψ = [ψ(s−1,u0)]: initial feature matrix
S = [s−1]: initial state dictionary
I =

[
0 Iny

]
∈ Rny×ns : measurement matrix

for i = 1, · · · do
Predict:
Get current input ui and past state si−1

Propagate a priori state estimate
s−i = Ω⊺

i ψ(si−1,ui) see (30)
Compute state transition dynamics:

F1(i) = 2asA⊺
i KiD⊺

i︸ ︷︷ ︸
Λi

(43)

F2(i) = 1ns
ψ(si−1,ui)

⊺ (47)
Propagate a priori covariance estimate:

P−
1 =

[
F1P+

1 + F2(P+
2)

⊺
]

F⊺
1

+
[
F1P+

2 + F2P+
4

]︸ ︷︷ ︸
P−
2

F⊺
2 + σ2

sIns
(52)

P−
4 = P+

4 + σ2
ΩInΩ

(55)
Update:
Obtain innovation or measurement residual

ei = di − yi
Compute Kalman gain:

L1 ← last ny columns of P−
1 (58)

L2 ← last ny columns of (P−
2)

⊺ (59)
M← the ny × ny lower-right corner of P−

1 (60)
N← (M + σ2

yIny)
−1 (61)

K1 ← L1N (62)
K2 ← L2N (62)

Update a posteriori estimates:
s+ = s− +K1e (65)
Ω+ = Ω− +K2e (66)
P+
1 = P−

1 −K1L⊺
1 (67)

P+
2 = P−

2 −K1L⊺
2 (68)

P+
4 = P−

4 −K2L⊺
2 (69)

end for

III.D. The Kernel Advantage

This paper’s major contribution is a novel formulation under
a unifying framework that tackles all three major shortcomings
of classic Kalman filter: linearity, prior knowledge of accurate
system parameters, and lower-order innovation statistics.

Kernel methods have additional properties that make them
especially appealing for real-world applications. For example,
we can exploit the structure of the RKHS to our advantage as
we already demonstrated with the nearest instance centroid
estimation (NICE) approach [37]. In fact, the representer
theorem yields an input-output function that is a sum of terms
centered at the data samples. We can partition this large sum
into quasi-orthogonal sub-sums, simplifying the process and
allowing the design of novel input-output maps by simple
concatenation, which opens the door for fast search procedure
to compose on-the-fly new filters using ideas from transfer
learning, as required for nonstationary environments.

For Bayesian filtering, it is crucial that the two basic prop-
erties of an error covariance are preserved in each iteration,
namely symmetry and positive definiteness. In practice, due to
numerical errors by arithmetic operations, these two properties
are often lost or destroyed and a square-root formulation is
required [38]. Kernel methods, on the other hand, are immune
to these problems due to the use of positive definite kernel
function satisfying Mercer’s conditions.

Furthermore, as hinted in Sec. III.A., kernel methods have
the added advantage of preserving the learning algorithm
regardless of input type (numerical or nonnumerical), by
selecting the appropriate reproducing kernel. This formulation
imposes no restriction on the representation or relationship
between the input signals, e.g., we can model a biological
system, taking spike trains, continuous amplitude local field
potentials (LFPs), and vectorized state variables as inputs. As a
proof of concept, we implemented KAARMA for biologically-
inspired spike input in [26].

III.E. Relationship to Information Theoretic Learning (ITL)

The aesthetics of Kalman filtering lies in its parsimonious
form, by considering only the uncertainty represented in the
covariance. It is the optimal linear MSE filter. In developing
the functional Bayesian filter, we see that higher-order mo-
ments are automatically preserved such that the estimation of
the state uses all statistical information contained in the data.
Here, we elucidate the properties of ITL, its connection to
FBF, and the performance boost.

ITL is a framework to adapt nonparametric systems using
information quantities such as entropy and divergence [30].
ITL criterion is still directly estimated from the data via Parzen
kernel estimator, but it extracts more information from the
data for adaptation, and therefore yields solutions that are
more accurate than MSE in non-Gaussian and nonlinear signal
processing.

A more general form of correntropy (cross-correntropy)
between two random variables is defined as

Vσ(X,Y)
∆
= E[Gσ(X − Y)] (73)

where Gσ is the normalized Gaussian kernel

IEEE TRANSACTIONS ON SIGNAL PROCESSING 8

Gσ(x− xi) =
1√
2πσ

exp

(
− (x− xi)2

2σ2

)
(74)

with kernel size or bandwidth parameter σ > 0.
The sample estimate of correntropy for a finite number of

data {xi, yi}Ni=1 is

V̂N,σ(X,Y) =
1

N

N∑
i=1

Gσ(xi − yi). (75)

Using Taylor series expansion for the Gaussian kernel, corren-
tropy can be expressed as

Vσ(X,Y) =
1√
2πσ

∞∑
n=0

(−1)n

2nσ2nn!
E[(X − Y)2n] (76)

which involves all the even-order moments of the random
variable X−Y (where the kernel choice dictates the expansion,
e.g., the Laplacian kernel contains all the moments) [30].

In fact, all learning algorithms that use nonparametric pdf
estimates in the input space admit an alternative formulation as
kernel methods expressed in terms of inner products. As shown
above, the kernel techniques are able to extract higher-order
statistics of the data that should lead to performance improve-
ments for non-Gaussian environments. A major limitation
of conventional statistical measures is the i.i.d. assumption,
because most practical problems involve some correlation or
temporal structure. Therefore, most statistical methods are not
using all the available information in the case of temporally
correlated (non-white) input signals. Unlike conventional mea-
sures, the generalized correlation function effectively exploits
both the statistical and the temporal information about the
input signal. The maximum correntropy Kalman filter (MCKF)
was proposed to improve the robustness of Kalman filter
against impulsive noises in [39], which adopts the robust
maximum correntropy criterion (MCC) as the optimality cri-
terion, instead of the minimum mean-square-error (MMSE).
This useful feature is intrinsic in the FBF formulation, even
without explicitly defining ITL cost functions (please refer to
the detailed derivation of P−

2 in the Appendix).

III.F. Shortcomings of FBF

As already mentioned earlier, unlike its input-space counter-
part, the computational cost of kernel methods is a function of
the number of training instances, not the dimensionality of the
input. Although the Gaussian RBF kernel yields reasonably
good results under the general assumption of smoothness
(especially in the absence of expert knowledge on the data
or task domain), performance will depend on the choice of
kernel and its parameters for individual applications. In the
RKHS, the metric of similarity is defined by both the kernel
and its parameters, e.g., the Gaussian bandwidth. The same
input data can be mapped to vastly different functionals de-
pending on the kernel bandwidth selected. Some well-known
techniques for bandwidth selection include cross-validation,
nearest neighbors, penalizing functions, and plug-in methods
[40]. For unknown dynamical systems, the dimensionality of
the hidden state is another hyperparameter. However, since the
state space is continuous-valued, we have found empirically
that a small dimension of 3 or 4 provides sufficient diversity
to learn an equivalent attractor for many synthetic and real

dynamics [24]–[26]. These and many others, such as the
inverse mapping from the RKHS back to the input space
(the pre-image problem [41]) which would further simplify
the formulation and improve estimation accuracy, are all open
problems that require further theoretical analysis.

IV. EXPERIMENTS AND RESULTS

Here, we illustrate and evaluate the proposed Functional
Bayesian Filter using numerical examples. As a proof-of-
concept, we consider the following tasks: recurrent network
training, chaotic time-series estimation and cooperative fil-
tering using Gaussian and non-Gaussian noises, and inverse
kinematics modeling.

IV.A. Cooperative Filtering for Signal Enhancement

First, we consider the scenario of an unknown nonlinear
system with only noisy observations available, and compare
the denoising performance (signal enhancement) of the func-
tional Bayesian filter with that of the cubature Bayesian filter
in training a dynamical system in the form of a recurrent neural
network on the Mackey-Glass (MG) chaotic time series yt
[42], defined by the following delay differential equation

dyt
dt

=
βy(t−τ)

1 + yn(t−τ)

− γyt

where β = 0.2, γ = 0.1, τ = 30, n = 10, discretized at a sam-
pling period of 6 seconds using the fourth-order Runge-Kutta
method, with initial condition y0 = 0.9. Chaotic dynamics
are extremely sensitive to initial conditions: in general, small
perturbations in the present state yield widely diverging out-
comes, rendering long-term prediction intractable, popularized
as the butterfly effect [43]. Since the only data available is
the time series, we use time-delay embedding to model the
dynamics of the chaotic system, i.e., to predict the next data
sample yi+1, the input is a properly chosen sliding window
ui = [yi, yi−1, · · · , yi−(ℓ−1)], where ℓ is the embedding
dimension. Here, we follow the experimental setup outlined
in [38], with embedding length ℓ = 7, and, instead of using
the clean data yt, we construct a nonlinear empirical model
of the dynamical system from only the noisy measurements
(desired output di).

Cooperative filtering aims to construct an empirical model
using (pseudo-) clean data extracted from the noisy measure-
ments. The signal estimator is coupled with the weight param-
eter estimator. For the cubature Kalman approach (specifically,
the square-root version or SCKF), an RNN is used to model
the dynamics with its weights, the weights of the RNN are
estimated from the latest signal estimate (and vice versa).
The SSM for the RNN architecture, trained using square-root
cubature Kalman filter (SCKF), is defined as

Wi = Wi−1 + qi−1

di = W(o)h(W(r)xi−1 + W(i)ui) + ri

where the input weight W(i), the recurrent weight W(r), and
the output weight W(o) are matrices of appropriate dimensions
(collectively, they can be arranged into an orderly weight
vector Wi), the process noise is additive Gaussian with zero-
mean and covariance Qi, i.e., qi ∼ N (0, Qi), the measurement

IEEE TRANSACTIONS ON SIGNAL PROCESSING 9

Fig. 3: Recurrent network trained using (a) Square-Root Cu-
bature Kalman Filter (b) Functional Bayesian Filter.

noise is ri ∼ N (0, Ri), internal state or output of the hidden
layer at time (i−1) is xi−1, the input is denoted ui, the desired
output di is the measurement, and h(·) denotes the activation
function. The input embedding dimension is set at nu = 7,
with one self-recurrent hidden layer with 5 neurons (nx = 5),
a single output, and bias at each node, as shown in Fig. 3(a).
The hidden neuron activations use hyperbolic tangent function,
and the output neuron is linear. The dynamic state-space model
for the signal estimator is written as

ui = f(ui−1, Ŵi−1|i−1, xi−2) + [1 0 · · · 0]⊺wi+1

di = [1 0 · · · 0]ui + vi

where f denotes the 7-5R-1 RNN state transition function
concatenated with the delayed output, the measurement noise
vi ∼ N (0, σ2

v) corresponds to the signal-to-noise ratio (SNR),
the process noise wi−1 ∼ N (0, σ2

w) was fixed to be 10% of
σ2
v , and the initial estimate is assumed to be zero with unity

covariance.
A noisy (10 dB SNR) MG chaotic time sequence of 1000

samples is used to train the RNN. For each training run,
ten batches were made. Each batch consists of 100 time-
step updates, from a randomly selected starting point in the
training sequence. The state of the RNN at time step i = 0
was assumed to be zero, i.e., x0 = 0. During the test phase,
SCKF is performed on an independent sequence of 100 noisy
samples using the state-transition equation obtained from the
fixed weights W. The ensemble-averaged mean square error
(MSE) is computed for 50 independent training runs.

For FBF, the recurrent architecture is parsimonious, Fig.
3(b), and the signal state and network weights are estimated
simultaneously by construction. The kernel parameters for the
state, input, state covariance P1, and weight covariance P4 are
as = 0.6, au = 1.8, aP1 = 0.4, and aP4 = 0.2, respectively.
The state covariance, output variance, and weight covariance
are initialized as σ2

s = 10, σ2
y = 0.08, σ2

P4
= 10, respectively.

There are no bias terms for our FBF implementation. Using the

Fig. 4: Signal enhancement for noisy Mackey-Glass chaotic
time series.

small-step-size theory framework [44], which self-regularizes
KAF, we scale the state Kalman gain K1 by a constant factor
of 0.5, and the weight gain K2 by a constant factor of 0.1.
Note, the FBF is an online kernel method with a dictionary
constructed incrementally with each incoming sample (the
initial point is randomly initialized), e.g., after 100 samples,
the dictionary size becomes 101.

SCKF has been successfully validated to significantly out-
perform other known nonlinear filters such as EKF and central-
difference Kalman filter (CDKF) and provides improved nu-
merical stability over CKF [38]. It is important to reiterate
that the two essential properties of error covariance matrix
(symmetry and positive definiteness) are always preserved in
FBF, since we are using positive definite kernel functions
satisfying Mercer’s conditions, unlike input-space arithmetic
operations such as CKF, where these two properties are often
lost or destroyed and a square-root version is preferred. Here
we focus on the performance comparison of SCKF and FBF.
Fig. 4 shows the filtering performance on the independent
test signal during one of the 50 runs. The “priori” label
denotes the time update using the predictive density before
receiving a new measurement; “posteriori”, the measurement
update from the posterior density. Fig. 5 shows the ensemble-
averaged MSE (error bars represent one standard deviation)
over all 50 runs versus the number of batch iterations, where
each training iteration consists of a 100-sample noisy sequence
with random starting point in the 1000-sample training data.
Clearly, the FBF significantly improves the quality of the
signal as compared to the SCKF.

IV.B. Ikeda

Next, we evaluate the performance of the FBF using mul-
tivariate chaotic time series and under various non-Gaussian
noise conditions. The 2D Ikeda map is defined by

xi+1 =

[
x
(1)
i+1

x
(2)
i+1

]
=

[
1 + c

(
x
(1)
i cos ti − x

(2)
i sin ti

)
c
(
x
(1)
i sin ti + x

(2)
i cos ti

)]
(77)

where parameter c = 0.84 and ti = 0.4 − 6

1+
(
x
(1)
i

)2
+
(
x
(2)
i

)2

with initial condition x0 = [1, 0]
⊺. Four different types of

IEEE TRANSACTIONS ON SIGNAL PROCESSING 10

Fig. 5: Ensemble-averaged Mean-Squared Error (MSE) over
50 runs vs. number of batch iterations (each training iteration
consists of a 100-sample sequence with random starting point).

additive noise (Gaussian, Laplacian, uniform, and symmetric
alpha-stable) are introduced to obtain the noisy observations
yi, with 3 dB of SNR, from which we will estimate the clean
data. Since the variance of alpha-stable noise is undefined for
α < 2, SNR was estimated as the ratio of the signal power
to the squared dispersion or scale parameter γ of the noise
[30]. The initial 201 data points are used for training, and
the next 200 points are for testing. For each estimator, 20
independent trials were averaged to produce the MSE result
(mean ± σ). The nonlinear Kalman extensions (EKF, UKF,
and CKF) assumes known accurate system models, which
should provide an advantage. For DSMCE, the conditional
embedding operator construction assume known hidden states
xi and noisy measurements yi, which should also provide an
advantage during training. For KKF-CEO and FBF, only the
noisy measurements are used for training, i.e., using yi−1 as
input to predict yi. Please refer to [22] for a detailed discussion
on the experimental setup.

For FBF, the empirical hidden states x̂i have dimension
nx = 2, i.e., ns = 4 for the augmented state vectors si,
with input state kernel parameter as = 0.8, state covariance
kernel parameter aP1

= 0.8, and weight covariance kernel
parameter aP4

= 0.8. Initialization was set for the following
parameters: state variance σ2

s = 1, weight variance σ2
Ω = 1,

output variance σ2
y = 40.

Table II summarizes the mean-squared-error (MSE) testing
set performance of the proposed FBF with the performances
of EKF, UKF, CKF, DSMCE, and KKF-CEO. Despite the ob-

Fig. 6: Two-joint robot arm illustrating how the Cartesian
coordinates (y1, y2) of the end effector is mapped to the given
angles (α1, α2). The solid and dashed lines show the ‘elbow
up’ and ‘elbow down’ situations, respectively.

vious disadvantage of not having accurate system knowledge
or access to hidden states during training, FBF outperforms
the best in all four noisy environments tested. The next-best
performances are given by KKF-CEO. Kernel methods are
able to leverage high-dimensional nonlinear representation of
the signal in the RKHS to better model dynamical systems.
Furthermore, the FBF uses information theoretic learning to
preserve the nonparametric nature of correlation learning and
MSE adaptation. The cost function is still directly estimated
from observation via a Parzen kernel estimator, but it extracts
more information from the data for adaptation, and therefore
yields solutions that are more accurate than MSE in non-
Gaussian and nonlinear signal processing. The FBF outper-
formed the KKF-CEO method because it uses a full state-
space representation constructed in the RKHS, which can scale
with the complexity of the nonlinear dynamics, and not only
assuming a simple additive noise system model.

IV.C. Modeling Inverse Kinematics in a Robotic Arm

In a two-joint robotic arm, Fig. 6, given the joint angles
(α1, α2), the kinematics equations give the Cartesian coordi-
nate of the robot arm end-effector position as:

(y1, y2) =
{
r1 cos(α1) − r2 cos(α1 + α2)

r1 sin(α1) − r2 sin(α1 + α2)

where r1 = 0.8 and r2 = 0.2 are the link lengths, with α1 ∈
[0.3, 1.2] and α2 ∈ [π/2, 3π/2] are the joint ranges. Finding
the mapping from (y1, y2) to (α1, α2) is called the inverse
kinematics, which is not a one-to-one mapping: as shown in
Fig. 6, both the elbow-up and elbow-down joint angles result
in the same tip-of-the-arm position.

Let the state vector be x = [α1, α2]
⊺, and the measurement

vector be y = [y1, y2]
⊺. The state-space representation of the

inverse kinematic problem is written as
xi+1 = xi + wi

yi =

[
cos(α1) − cos(α1 + α2)

sin(α1) − sin(α1 + α2)

][
r1

r2

]
+ vk

with zero-mean Gaussian measurement and process noises,
w ∼ N (0,diag[0.012, 0.12]) and v ∼ N (0, 0.005I2) respec-
tively, where I2 is the 2D identity matrix.

We compare the nonlinear filter performances of cubature
Kalman filter and FBF using the root-mean square error
(RMSE) of the angles over 200 Monte Carlo runs. As a

IEEE TRANSACTIONS ON SIGNAL PROCESSING 11

TABLE II: Test Set MSE of 2D Ikeda Map

Noise

Alg.
EKF UKF CKF DSMCE KKF-CEO FBF

Gaussian 0.3630 ± 0.0448 0.2639 ± 0.0218 0.2374 ± 0.0176 0.3918 ± 0.0502 0.2253 ± 0.0168 0.1803 ± 0.0129

Laplacian 0.3897 ± 0.0407 0.2719 ± 0.0217 0.2574 ± 0.0199 0.3555 ± 0.0626 0.2121 ± 0.0202 0.1687 ± 0.0117

Uniform 0.3843 ± 0.0308 0.2696 ± 0.0213 0.2427 ± 0.0193 0.3945 ± 0.0800 0.2384 ± 0.0180 0.1848 ± 0.0103

Stable (α = 1.6) 0.3021 ± 0.1232 0.2465 ± 0.0969 0.2580 ± 0.0991 0.2319 ± 0.1335 0.1461 ± 0.0413 0.1224 ± 0.0205

100 200 300 400 500 600

Time

0.2

0.4

0.6

0.8

1

1.2

α
1 Actual

CKF

FBF

100 200 300 400 500 600

Time

2

3

4

α
2

Fig. 7: Inverse Kinematics State Estimation

100 200 300 400 500 600

Time

10
−1

10
0

R
M
S
E

RMSECKF

RMSEFBF

Fig. 8: Performances

self-assessment of the estimation errors, a filter produces an
error covariance matrix. Thus, we consider the filter-estimated
RMSE as the square-root of the appropriate diagonal entries
of the covariance, averaged over the runs. The filter estimate is
deemed consistent if the true and estimated RMSE are equal.
Again, we see that FBF outperforms CKF.

V. CONCLUSION

Various aspects of the classic Kalman filter have been
extended for practical applications. This paper presents a novel
formulation that tackles all three major shortcomings–linearity,
prior knowledge of accurate system parameters, and lower-
order statistics–under a unifying framework, using the theory
of reproducing kernel Hilbert Space. Applying kernel method
and the representer theorem to perform linear quadratic estima-
tion on a full state space model in a functional space, we derive
the Bayesian recursive state estimation for a general nonlinear
dynamical system in the original input space. Unlike existing
nonlinear Kalman extensions where the system dynamics are
assumed known, the state-space representation for the Func-
tional Bayesian Filter is completely learned from observation,

with universal approximation property. Using positive definite
kernel functions satisfying Mercer’s conditions to compute
information quantities, the FBF exploits both the statistical
and time-domain information about the signal, extracts higher-
order moments, and preserves the properties of covariances
without the ill effects due to conventional arithmetic opera-
tions. This novel kernel adaptive filtering algorithm is applied
to chaotic time-series estimation and prediction using Gaussian
and non-Gaussian noises and inverse kinematics modeling.
FBF outperforms existing algorithms under different noise
conditions in the experiments.

Kernel method is extremely versatile and comes with many
appealing properties. In the future, we will examine sparsifica-
tion techniques for FBF, apply FBF to nonnumerical data such
as graphs and modeling biological systems using neural spike
trains, and explore applications for nonstationary environments
using ideas from kernel transfer learning.

REFERENCES

[1] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Trans. ASME, Series D., Journal of Basic Eng., vol. 82,
pp. 35–45, 1960.

[2] H. Kushner, “Approximations to optimal nonlinear filters,” IEEE Trans-
actions on Automatic Control, vol. 12, no. 5, pp. 546–556, October
1967.

[3] B. Anderson and J. Moore, Optimal Filtering. Englewood Cliffs, NJ,
USA: Prentice-Hall, 1979.

[4] S. Haykin, Kalman Filtering and Neural Networks. New York, NY,
USA: John Wiley & Sons, Inc., 2001.

[5] S. J. Julier and J. K. Uhlmann, “A new extension of the Kalman filter
to nonlinear systems,” in Proceedings of 11th International Symposium
on Aerospace/Defense Sensing (AeroSense), Simulations and Controls,
1997, pp. 182–193.

[6] E. A. Wan and R. V. D. Merwe, “The unscented Kalman filter for non-
linear estimation,” in Proceedings of the IEEE 2000 Adaptive Systems
for Signal Processing, Communications, and Control Symposium (Cat.
No.00EX373), Oct 2000, pp. 153–158.

[7] I. Arasaratnam and S. Haykin, “Cubature Kalman filters,” IEEE Trans-
actions on Automatic Control, vol. 54, no. 6, pp. 1254–1269, June 2009.

[8] A. Doucet, S. J. Godsill, and C. Andrieu, “On sequential Monte Carlo
sampling methods for Bayesian filtering,” Statistics and Computing,
vol. 10, pp. 197–208, 2000.

[9] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to
nonlinear/non-Gaussian Bayesian state estimation,” IEE Proceedings F
- Radar and Signal Processing, vol. 140, no. 2, pp. 107–113, 1993.

[10] A. Aravkin, J. V. Burke, L. Ljung, A. L., and G. Pillonetto, “Generalized
Kalman smoothing: Modeling and algorithms,” Automatica, vol. 86,
pp. 63 – 86, 2017. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0005109817304326

[11] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking,”
IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174–188,
2002.

[12] B. Jia, M. Xin, and Y. Cheng, “High-degree cubature kalman filter,”
Automatica, vol. 49, no. 2, pp. 510 – 518, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S000510981200550X

http://www.sciencedirect.com/science/article/pii/S0005109817304326
http://www.sciencedirect.com/science/article/pii/S0005109817304326
http://www.sciencedirect.com/science/article/pii/S000510981200550X

IEEE TRANSACTIONS ON SIGNAL PROCESSING 12

[13] L. Ralaivola and F. d’Alché-Buc, “Dynamical modeling with kernels
for nonlinear time series prediction,” in Proceedings of the 16th
International Conference on Neural Information Processing Systems,
ser. NIPS’03. Cambridge, MA, USA: MIT Press, 2003, pp. 129–136.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2981345.2981362

[14] L. Song, J. Huang, A. J. Smola, and K. Fukumizu, “Hilbert
space embeddings of conditional distributions with applications to
dynamical systems,” in Proceedings of the 26th Annual International
Conference on Machine Learning, ser. ICML ’09. New York,
NY, USA: ACM, 2009, pp. 961–968. [Online]. Available: http:
//doi.acm.org/10.1145/1553374.1553497

[15] K. Fukumizu, L. Song, and A. Gretton, “Kernel Bayes’ rule:
Bayesian inference with positive definite kernels,” J. Mach. Learn.
Res., vol. 14, no. 1, pp. 3753–3783, Dec. 2013. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2567709.2627677

[16] B. Schölkopf, A. J. Smola, and K. Müller, “Nonlinear component
analysis as a kernel eigenvalue problem,” Neural Computation, vol. 10,
no. 5, pp. 1299–1319, July 1998.

[17] C. E. Rasmussen and C. K. I. Williams, Gaussian processes for machine
learning. Cambridge, MA, USA: MIT Press, 2005.

[18] J. Ko and D. Fox, “GP-BayesFilters: Bayesian filtering using gaussian
process prediction and observation models,” in 2008 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2008, pp. 3471–
3476.

[19] R. Turner, M. P. Deisenroth, and C. E. Rasmussen, “State-space
inference and learning with Gaussian processes,” in Proceedings of
the Thirteenth International Conference on Artificial Intelligence and
Statistics, vol. 9, 13–15 May 2010, pp. 868–875.

[20] P. Neveux, E. Blanco, and G. Thomas, “Robust filtering for linear time-
invariant continuous systems,” IEEE Transactions on Signal Processing,
vol. 55, no. 10, pp. 4752–4757, 2007.

[21] T. Zhou, “Robust recursive state estimation with random measurement
droppings,” IEEE Transactions on Automatic Control, vol. 61, no. 1, pp.
156–171, 2016.

[22] P. Zhu, B. Chen, and J. C. Prı́ncipe, “Learning nonlinear generative
models of time series with a Kalman filter in RKHS,” IEEE Transactions
on Signal Processing, vol. 62, no. 1, pp. 141–155, Jan 2014.

[23] W. Liu, J. C. Prı́ncipe, and S. Haykin, Kernel Adaptive Filtering: A
Comprehensive Introduction. Hoboken, NJ, USA: Wiley, 2010.

[24] K. Li and J. C. Prı́ncipe, “The kernel adaptive autoregressive-moving-
average algorithm,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27,
no. 2, pp. 334–346, Feb. 2016.

[25] ——, “Automatic insect recognition using optical flight dynamics mod-
eled by kernel adaptive ARMA network,” in 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
March 2017, pp. 2726–2730.

[26] ——, “Biologically-inspired spike-based automatic speech recognition
of isolated digits over a reproducing kernel Hilbert space,” Frontiers
in Neuroscience, vol. 12, p. 194, 2018. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fnins.2018.00194

[27] R. J. Williams, “Training recurrent networks using the extended Kalman
filter,” in Proceedings of International Joint Conference on Neural
Networks (IJCNN), vol. 4, June 1992, pp. 241–246 vol.4.

[28] N. Aronszajn, “Theory of reproducing kernels,” Trans. Amer. Math. Soc.,
vol. 68, pp. 337–404, 1950.

[29] E. Parzen, “Statistical methods on time series by Hilbert space methods,”
Applied Mathematics and Statistics Laboratory, Stanford, CA, Tech.
Rep. 23, 1959.

[30] J. C. Prı́ncipe, Information Theoretic Learning: Renyi’s Entropy and
Kernel Perspectives. New York, NY, USA: Springer, 2010.

[31] E. Parzen, “On estimation of a probability density function and mode,”
Ann. Math. Statist., vol. 33, no. 3, pp. 1065–1076, 09 1962. [Online].
Available: https://doi.org/10.1214/aoms/1177704472

[32] B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. Cambridge, MA,
USA: MIT Press, 2001.

[33] B. Schölkopf, R. Herbrich, and A. J. Smola, “A generalized representer
theorem,” in Proc. 14th Annual Conf. Comput. Learning Theory, 2001,
pp. 416–426.

[34] H. T. Siegelmann, B. G. Horne, and C. L. Giles, “Computational
capabilities of recurrent NARX neural networks,” IEEE Transactions
on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 27, no. 2,
pp. 208–215, dec 1997.

[35] H. T. Siegelmann and E. D. Sontag, “On the computational
power of neural nets,” Journal of Computer and System Sciences,
vol. 50, no. 1, pp. 132–150, 1995. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0022000085710136

[36] K. Li and J. C. Prı́ncipe, “Surprise-novelty information processing
for Gaussian online active learning (SNIP-GOAL),” in Proceedings of
International Joint Conference on Neural Networks (IJCNN), 2018, pp.
1–6.

[37] ——, “Transfer learning in adaptive filters: The nearest instance
centroid-estimation kernel least-mean-square algorithm,” IEEE Trans-
actions on Signal Processing, vol. 65, no. 24, pp. 6520–6535, 2017.

[38] I. Arasaratnam, “Cubature Kalman filtering: Theory & applications,”
Ph.D. dissertation, McMaster University, 2009.

[39] B. Chen, X. Liu, H. Zhao, and J. C. Prı́ncipe, “Maximum
correntropy Kalman filter,” Automatica, vol. 76, pp. 70 – 77,
2017. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S000510981630396X

[40] W. Härdle, Applied Nonparametric Regression, ser. Econometric Society
Monographs. Cambridge University Press, 1990.

[41] S. Mika, B. Schölkopf, A. J. Smola, K.-R. Müller, M. Scholz,
and G. Rätsch, “Kernel PCA and de-noising in feature spaces,” in
Advances in Neural Information Processing Systems 11. MIT Press,
1999, pp. 536–542. [Online]. Available: http://papers.nips.cc/paper/
1491-kernel-pca-and-de-noising-in-feature-spaces.pdf

[42] M. C. Mackey and L. Glass, “Oscillation and chaos in physiological
control systems,” Science, vol. 197, no. 4300, pp. 287–289, Jul. 1977.

[43] E. Ott, Chaos in dynamical systems, 2nd ed. Cambridge University
Press, 2002.

[44] S. Haykin, Adaptive Filter Theory, 4th ed. Prentice Hall, 2002.

Kan Li (S’08-M’15) received the B.A.Sc. degree in
electrical engineering from the University of Toronto
in 2007, the M.S. degree in electrical engineering
from the University of Hawaii in 2010, and the Ph.D.
degree in electrical engineering from the University
of Florida in 2015. He was awarded an SBIR grant
from the NSF in 2016 to develop ultra-low power,
always-on voice trigger. He worked as a research
scientist at the University of Florida from 2018-
2020, and is currently the principal lead for new
product development and senior research scientist at

Aventusoft Inc., supported by SBIR grants from DARPA, NIH, and NSF.
His main research interests include artificial intelligence, machine learning,
and signal processing, with applications in biologically-inspired computing,
computer vision, health care, lifelong learning, time series analysis, and
nonlinear dynamical system modeling.

José C. Prı́ncipe (M’83-SM’90-F’00-LF’17) is the
BellSouth and Distinguished Professor of Electrical
and Biomedical Engineering at the University of
Florida, and the Founding Director of the Compu-
tational NeuroEngineering Laboratory (CNEL). His
primary research interests are in advanced signal
processing with information theoretic criteria and
adaptive models in reproducing kernel Hilbert spaces
(RKHS), with application to brain-machine inter-
faces (BMIs). Dr. Prı́ncipe is a Fellow of the IEEE,
ABME, and AIBME. He is the past Editor in Chief

of the IEEE Transactions on Biomedical Engineering, past Chair of the
Technical Committee on Neural Networks of the IEEE Signal Processing
Society, Past-President of the International Neural Network Society, and
a recipient of the IEEE EMBS Career Award, the IEEE Neural Network
Pioneer Award, and the IEEE SPS Claude Shannon-Harry Nyquist Technical
Achievement Award.

http://dl.acm.org/citation.cfm?id=2981345.2981362
http://doi.acm.org/10.1145/1553374.1553497
http://doi.acm.org/10.1145/1553374.1553497
http://dl.acm.org/citation.cfm?id=2567709.2627677
https://www.frontiersin.org/article/10.3389/fnins.2018.00194
https://doi.org/10.1214/aoms/1177704472
http://www.sciencedirect.com/science/article/pii/S0022000085710136
http://www.sciencedirect.com/science/article/pii/S0022000085710136
http://www.sciencedirect.com/science/article/pii/S000510981630396X
http://www.sciencedirect.com/science/article/pii/S000510981630396X
http://papers.nips.cc/paper/1491-kernel-pca-and-de-noising-in-feature-spaces.pdf
http://papers.nips.cc/paper/1491-kernel-pca-and-de-noising-in-feature-spaces.pdf

IEEE TRANSACTIONS ON SIGNAL PROCESSING 13

APPENDIX

Since nΩ is infinite for the Gaussian kernel, we show how
to compute each of the submatrices P−

i of the a priori state
covariance matrix estimate P, except P−

3 since it is simply the
transpose of P−

2 , in the input space using the kernel trick. In
order to make the actual computation tractable, we break the
weight matrix vector Ωi in (34) into individual state dimension
components and rewrite (36) as[

si
Ω

(k)
i

]
=

[
F1 F(k)

2

0 In
Ω(k)

][
si−1

Ω
(k)
i

]
+w

(k)
i−1 (78)

where Ω
(k)
i are all the weights connected to the k-th output

state node (1 ≤ k ≤ ns) and

F(k)
2 (i)

∆
=

∂si
∂Ω

(k)
i

= I(k)ns
ψ(si−1,ui)

⊺. (79)

At each time step i, this process is repeated for each of the
ns state components.

A.A. Computing P−
2 Recursively

Since the update for (P−
2)

(k) ∈ Rns×n
Ω(k) is a subroutine of

(P−
1)

(k), as shown in (52), we first show how to recursively
update this submatrix. Substituting (43), (79), and (68) into
(53), for the k-th state component, gives(

P−
2

)(k)
= Λi

(
P+
2

)(k)
+ I(k)ns

ψ(si−1,ui)
⊺
(
P+
4

)(k)
= Λi

(
P−
2 −K1L⊺

2

)(k)
+ I(k)ns

ψ(si−1,ui)
⊺
(
P+
4

)(k)
= Λi

(
P−
2 −K1IP−

2

)(k)
+ I(k)ns

ψ(si−1,ui)
⊺
(
P+
4

)(k)
= Λi (Ins

−K1I)︸ ︷︷ ︸
Λ′

i

(
P−
2

)(k)
+ I(k)ns

ψ(si−1,ui)
⊺
(
P+
4

)(k)
∆
= Λ′

i

(
P−
2

)(k)
+ I(k)ns

ψ(si−1,ui)
⊺
(
P+
4

)(k)
. (80)

The above expression has the same form as Equation (28)
in the kernel adaptive ARMA formulation [24], which we
reproduce here:

∂si
∂Ω

(k)
i

= Λi
∂si−1

∂Ω
(k)
i

+ I(k)ns
ψ(si−1,ui)

⊺. (81)

We see that the FBF formulation reduces to gradient descent
if the state variable Kalman gain K1 is zero and the weights
covariance matrix

(
P+
4

)(k)
is the identity matrix, i.e., unit vari-

ance. In other words, the FBF generalizes the kernel adaptive
ARMA algorithm. Using the ITL interpretation, where the
state-transition gradient Λi is a weighted Parzen estimate of
the joint input data (si,ui) pdf, we are effectively evolving
the density estimate recursively.

Given the initialization in (72), the ensuing update becomes

P(k)
2 (1|0) = I(k)ns

ψ(s0,u1)
⊺P(k)

4 (0). (82)

By induction, we can factor out the basis functions ψ(·, ·) and
express the recursion (80) as(

P−
2

)(k)
= Λ′

iV
(k)
i−1

(
Ψ′⊺

i−1

)(k)
+ I(k)ns

ψ(si−1,ui)
⊺
(
P+
4

)(k)
=
[
Λ′

iV
(k)
i−1, I

(k)
ns

] (
Ψ′⊺

i−1

)(k)
ψ(si−1,ui)

⊺
(
P+
4

)(k)
 (83)

= V(k)
i

(
Ψ′⊺

i

)(k)
(84)

where (Ψ′
i)

(k) ∆
= [(Ψ′

i−1)
(k)
,
(
P+
4

)(k)
ψ(si−1,ui)] ∈ RnΩ×i

is the dictionary of features generated by the input sequence
and corresponding forward-propagated states, normalized by
P(k)
4 (i−1|i−1), and V(k)

i
∆
=
[
Λ′

iV
(k)
i−1, I

(k)
ns

]
∈ Rns×i is the up-

dated state-transition gradient, with initializations (Ψ′
1)

(k)
=

[σ2
Ω(k)ψ(s0,u1)] and V(k)

1 = I(k)ns
, respectively. Note that this

implementation allows a different initial variance for each
state variable, however, unless explicitly given, for simplicity
and without loss of generality, we assume a constant initial
variance across all states, as in (71).

A.B. Updating P+
4

Before proceeding to the computation for (P−
1)

(k), we note
that (83) can be greatly simplified if

(
P+
4

)(k)
is just a scalar

multiplied by the identity matrix. Here we show that P4

maintains its diagonal form after the measurement update,
given its scaled identity matrix initialization in (71):

P(k)
4 (1|1) = P(k)

4 (1|0)− (K2L⊺
2)

(k)

= P(k)
4 (0) + σ2

Ω(k)InΩ
−
(
P−⊺
2 I⊺(M + σ2

yIny
)−1IP−

2

)(k)
= 2σ2

Ω(k)︸ ︷︷ ︸
σ2−
Ω(k)(1)

∆
= σ2

Ω(k)(1|0)

InΩ
−Ψ′

1 V(k)⊺
1 I⊺NIV(k)

1︸ ︷︷ ︸
B(k)
1

Ψ′⊺
1 (85)

= σ2−
Ω(k)(1)InΩ

− [σ2
Ω(k)ψ(s0,u1)]B

(k)
1

[
σ2
Ω(k)ψ(s0,u1)

]
︸ ︷︷ ︸

ς2
Ω(k)

(1)InΩ

(86)

=
(
σ2−
Ω(k)(1)− ς2Ω(k)(1)

)
InΩ

(87)
∆
= σ2+

Ω(k)(1)InΩ
(88)

where the superscripts − and + are used in conjunction with
a single parenthesized index (i) as shorthands for specifying
the a priori estimate (i|i−1) and a posteriori estimates (i|i) in
iteration i, the term B(k)

1 is a scalar from the associative prop-
erty of matrix multiplication, and ς2

Ω(k)(1) is a weighted scalar
product using the kernel trick. In general, for an arbitrary
iteration i > 1, the term B(k)

i
∆
= V(k)⊺

i I⊺NIV(k)
i ∈ Ri×i will

be a square matrix and can be computed in a straightforward
manner. If we denote its l-th row and m-th column element
as b(k)

lm and apply the kernel trick, then the entire second term
on the right-hand side of (86) effectively becomes a scalar (to
reconcile with the dimensionality of the RKHS, we multiply
it with an identity matrix InΩ

):

Ψ′
i V(k)⊺

i I⊺NIV(k)
i︸ ︷︷ ︸

B(k)
i

Ψ′⊺
i

=[Ψ′
i−1, σ

2+
Ω(k)(i−1)ψ(si−1,ui)]B

(k)
i

[
Ψ′⊺

i−1

σ2+
Ω(k)(i−1)ψ(si−1,ui)

]

=
i∑

m=1

i∑
l=1

σ2+
Ω(k)(l−1)ψ(sl−1,ul)b

(k)
lmσ

2+
Ω(k)(m−1)ψ(sm−1,um)

=
i∑

m=1

i∑
l=1

b(k)
lmσ

2+
Ω(k)(l−1)σ2+

Ω(k)(m−1)Kas(sl−1, sm−1)Kau(ul,um)

∆
=ς2Ω(k)(i). (89)

Similar to the update for P−
2 , we see that there is an informa-

tion theoretic interpretation here: the RKHS filter parameter

IEEE TRANSACTIONS ON SIGNAL PROCESSING 14

covariance P+
4 is updated using a weighted information po-

tential of the joint input data (si,ui).
Since we only need to keep track of the scalar σ2+

Ω(k)(i), this
simplifies the weighted features in (84) to

Ψ′
i
∆
= [Ψ′

i−1, ψ(si−1,ui)] (90)

V(k)
i

∆
=
[
Λ′

iV
(k)
i−1, σ

2+
Ω(k)(i−1)I(k)ns

]
(91)

and (
P−
2

)(k)
= V(k)

i Ψ′⊺
i (92)

where we can now separate the shared feature set completely
from their state-variable dependent coefficients for ease of
computation and storage, i.e., dropping the superscript (k) for
the standard representer theorem form.

A.C. Updating P−
1

Finally, we have all the tools to compute P−
1 . In order to

unclutter the notation, we first show some intermediate steps.
Substituting (79) and (68) for F(k)

2 and (P+
2)

(k), respectively,
the following product can be expressed as

F(k)
2

(
(P+

2)
(k)
)⊺

= I(k)ns
ψ(si−1,ui)

⊺
(
(Ins −K1I)

(
P−
2

)(k))⊺
(a)
= I(k)ns

ψ(si−1,ui)
⊺Ψ′

i−1︸ ︷︷ ︸
ki−1

V(k)⊺
i−1 (Ins −K1I)

⊺ (93)

where equality (a) follows from (92), and ki−1 is a vector of
kernel evaluations:

ki−1 =

Kas

(si−1, s0)Kau
(ui,u1)

...
Kas

(si−1, si−2)Kau
(ui,ui−1)

 . (94)

Similarly

(P−
2)

(k)
(

F(k)
2

)⊺
= V(k)

i Ψ′⊺
i ψ(si−1,ui)︸ ︷︷ ︸

k⊺
i

(
I(k)ns

)⊺
. (95)

Finally, rewriting the a priori state covariance estimate in (52)
for the k-th state component, using (93) and (95), yields

(P−
1)

(k) =
[
F1(P+

1)
(k) + (F2)

(k)
(
(P+

2)
(k)
)⊺]

F⊺
1

+ (P−
2)

(k)
(

F(k)
2

)⊺
+ σ2

sI(k)ns

=
[
Λi(P+

1)
(k) + I(k)ns

ki−1V(k)⊺
i−1 (Ins

−K1I)
⊺
]
Λ⊺

i

+ V(k)
i k⊺

i

(
I(k)ns

)⊺
+ σ2

sI(k)ns
. (96)

which can be calculated in a straightforward manner, since all
the terms involved are now expressed using finite dimensional
vectors and matrices.

	Introduction
	Bayesian Filtering
	Functional Bayesian Filtering (FBF)
	State Space Representation in the RKHS
	Bayesian filtering in the RKHS
	Complexity
	The Kernel Advantage
	Relationship to Information Theoretic Learning (ITL)
	Shortcomings of FBF

	Experiments and Results
	Cooperative Filtering for Signal Enhancement
	Ikeda
	Modeling Inverse Kinematics in a Robotic Arm

	Conclusion
	References
	Biographies
	Kan Li
	José C. Príncipe

	Appendix
	Computing P-2 Recursively
	Updating P+4
	Updating P-1

